2 resultados para AZOTOBACTER

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discriminant analysis (also known as discriminant function analysis or multiple discriminant analysis) is a multivariate statistical method of testing the degree to which two or more populations may overlap with each other. It was devised independently by several statisticians including Fisher, Mahalanobis, and Hotelling ). The technique has several possible applications in Microbiology. First, in a clinical microbiological setting, if two different infectious diseases were defined by a number of clinical and pathological variables, it may be useful to decide which measurements were the most effective at distinguishing between the two diseases. Second, in an environmental microbiological setting, the technique could be used to study the relationships between different populations, e.g., to what extent do the properties of soils in which the bacterium Azotobacter is found differ from those in which it is absent? Third, the method can be used as a multivariate ‘t’ test , i.e., given a number of related measurements on two groups, the analysis can provide a single test of the hypothesis that the two populations have the same means for all the variables studied. This statnote describes one of the most popular applications of discriminant analysis in identifying the descriptive variables that can distinguish between two populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In previous statnotes, the application of correlation and regression methods to the analysis of two variables (X,Y) was described. The most important statistic used to measure the degree of correlation between two variables is Pearson’s ‘product moment correlation coefficient’ (‘r’). The correlation between two variables may be due to their common relation to other variables. Hence, investigators using correlation studies need to be alert to the possibilities of spurious correlation and the methods of ‘partial correlation’ are one method of taking this into account. This statnote applies the methods of partial correlation to three scenarios. First, to a fairly obvious example of a spurious correlation resulting from the ‘size effect’ involving the relationship between the number of general practitioners (GP) and the number of deaths of patients in a town. Second, to the relationship between the abundance of the nitrogen-fixing bacterium Azotobacter in soil and three soil variables, and finally, to a more complex scenario, first introduced in Statnote 24involving the relationship between the growth of lichens in the field and climate.