65 resultados para ARTIFICIAL NEURAL NETWORKS
em Aston University Research Archive
Resumo:
A novel biosensing system based on a micromachined rectangular silicon membrane is proposed and investigated in this paper. A distributive sensing scheme is designed to monitor the dynamics of the sensing structure. An artificial neural network is used to process the measured data and to identify cell presence and density. Without specifying any particular bio-application, the investigation is mainly concentrated on the performance testing of this kind of biosensor as a general biosensing platform. The biosensing experiments on the microfabricated membranes involve seeding different cell densities onto the sensing surface of membrane, and measuring the corresponding dynamics information of each tested silicon membrane in the form of a series of frequency response functions (FRFs). All of those experiments are carried out in cell culture medium to simulate a practical working environment. The EA.hy 926 endothelial cell lines are chosen in this paper for the bio-experiments. The EA.hy 926 endothelial cell lines represent a particular class of biological particles that have irregular shapes, non-uniform density and uncertain growth behaviour, which are difficult to monitor using the traditional biosensors. The final predicted results reveal that the methodology of a neural-network based algorithm to perform the feature identification of cells from distributive sensory measurement has great potential in biosensing applications.
Resumo:
A number of researchers have investigated the impact of network architecture on the performance of artificial neural networks. Particular attention has been paid to the impact on the performance of the multi-layer perceptron of architectural issues, and the use of various strategies to attain an optimal network structure. However, there are still perceived limitations with the multi-layer perceptron and networks that employ a different architecture to the multi-layer perceptron have gained in popularity in recent years, particularly, networks that implement a more localised solution, where the solution in one area of the problem space does not impact, or has a minimal impact, on other areas of the space. In this study, we discuss the major architectural issues affecting the performance of a multi-layer perceptron, before moving on to examine in detail the performance of a new localised network, namely the bumptree. The work presented here examines the impact on the performance of artificial neural networks of employing alternative networks to the long established multi-layer perceptron. In particular, networks that impose a solution where the impact of each parameter in the final network architecture has a localised impact on the problem space being modelled are examined. The alternatives examined are the radial basis function and bumptree neural networks, and the impact of architectural issues on the performance of these networks is examined. Particular attention is paid to the bumptree, with new techniques for both developing the bumptree structure and employing this structure to classify patterns being examined.
Resumo:
This thesis presents a thorough and principled investigation into the application of artificial neural networks to the biological monitoring of freshwater. It contains original ideas on the classification and interpretation of benthic macroinvertebrates, and aims to demonstrate their superiority over the biotic systems currently used in the UK to report river water quality. The conceptual basis of a new biological classification system is described, and a full review and analysis of a number of river data sets is presented. The biological classification is compared to the common biotic systems using data from the Upper Trent catchment. This data contained 292 expertly classified invertebrate samples identified to mixed taxonomic levels. The neural network experimental work concentrates on the classification of the invertebrate samples into biological class, where only a subset of the sample is used to form the classification. Other experimentation is conducted into the identification of novel input samples, the classification of samples from different biotopes and the use of prior information in the neural network models. The biological classification is shown to provide an intuitive interpretation of a graphical representation, generated without reference to the class labels, of the Upper Trent data. The selection of key indicator taxa is considered using three different approaches; one novel, one from information theory and one from classical statistical methods. Good indicators of quality class based on these analyses are found to be in good agreement with those chosen by a domain expert. The change in information associated with different levels of identification and enumeration of taxa is quantified. The feasibility of using neural network classifiers and predictors to develop numeric criteria for the biological assessment of sediment contamination in the Great Lakes is also investigated.
Resumo:
In this work, different artificial neural networks (ANN) are developed for the prediction of surface roughness (R a) values in Al alloy 7075-T7351 after face milling machining process. The radial base (RBNN), feed forward (FFNN), and generalized regression (GRNN) networks were selected, and the data used for training these networks were derived from experiments conducted using a high-speed milling machine. The Taguchi design of experiment was applied to reduce the time and cost of the experiments. From this study, the performance of each ANN used in this research was measured with the mean square error percentage and it was observed that FFNN achieved the best results. Also the Pearson correlation coefficient was calculated to analyze the correlation between the five inputs (cutting speed, feed per tooth, axial depth of cut, chip°s width, and chip°s thickness) selected for the network with the selected output (surface roughness). Results showed a strong correlation between the chip thickness and the surface roughness followed by the cutting speed. © ASM International.
Resumo:
Introductory accounts of artificial neural networks often rely for motivation on analogies with models of information processing in biological networks. One limitation of such an approach is that it offers little guidance on how to find optimal algorithms, or how to verify the correct performance of neural network systems. A central goal of this paper is to draw attention to a quite different viewpoint in which neural networks are seen as algorithms for statistical pattern recognition based on a principled, i.e. theoretically well-founded, framework. We illustrate the concept of a principled viewpoint by considering a specific issue concerned with the interpretation of the outputs of a trained network. Finally, we discuss the relevance of such an approach to the issue of the validation and verification of neural network systems.
Resumo:
We present results that compare the performance of neural networks trained with two Bayesian methods, (i) the Evidence Framework of MacKay (1992) and (ii) a Markov Chain Monte Carlo method due to Neal (1996) on a task of classifying segmented outdoor images. We also investigate the use of the Automatic Relevance Determination method for input feature selection.
Resumo:
Introductory accounts of artificial neural networks often rely for motivation on analogies with models of information processing in biological networks. One limitation of such an approach is that it offers little guidance on how to find optimal algorithms, or how to verify the correct performance of neural network systems. A central goal of this paper is to draw attention to a quite different viewpoint in which neural networks are seen as algorithms for statistical pattern recognition based on a principled, i.e. theoretically well-founded, framework. We illustrate the concept of a principled viewpoint by considering a specific issue concerned with the interpretation of the outputs of a trained network. Finally, we discuss the relevance of such an approach to the issue of the validation and verification of neural network systems.
Resumo:
This thesis considers two basic aspects of impact damage in composite materials, namely damage severity discrimination and impact damage location by using Acoustic Emissions (AE) and Artificial Neural Networks (ANNs). The experimental work embodies a study of such factors as the application of AE as Non-destructive Damage Testing (NDT), and the evaluation of ANNs modelling. ANNs, however, played an important role in modelling implementation. In the first aspect of the study, different impact energies were used to produce different level of damage in two composite materials (T300/914 and T800/5245). The impacts were detected by their acoustic emissions (AE). The AE waveform signals were analysed and modelled using a Back Propagation (BP) neural network model. The Mean Square Error (MSE) from the output was then used as a damage indicator in the damage severity discrimination study. To evaluate the ANN model, a comparison was made of the correlation coefficients of different parameters, such as MSE, AE energy, AE counts, etc. MSE produced an outstanding result based on the best performance of correlation. In the second aspect, a new artificial neural network model was developed to provide impact damage location on a quasi-isotropic composite panel. It was successfully trained to locate impact sites by correlating the relationship between arriving time differences of AE signals at transducers located on the panel and the impact site coordinates. The performance of the ANN model, which was evaluated by calculating the distance deviation between model output and real location coordinates, supports the application of ANN as an impact damage location identifier. In the study, the accuracy of location prediction decreased when approaching the central area of the panel. Further investigation indicated that this is due to the small arrival time differences, which defect the performance of ANN prediction. This research suggested increasing the number of processing neurons in the ANNs as a practical solution.
Resumo:
Drying is an important unit operation in process industry. Results have suggested that the energy used for drying has increased from 12% in 1978 to 18% of the total energy used in 1990. A literature survey of previous studies regarding overall drying energy consumption has demonstrated that there is little continuity of methods and energy trends could not be established. In the ceramics, timber and paper industrial sectors specific energy consumption and energy trends have been investigated by auditing drying equipment. Ceramic products examined have included tableware, tiles, sanitaryware, electrical ceramics, plasterboard, refractories, bricks and abrasives. Data from industry has shown that drying energy has not varied significantly in the ceramics sector over the last decade, representing about 31% of the total energy consumed. Information from the timber industry has established that radical changes have occurred over the last 20 years, both in terms of equipment and energy utilisation. The energy efficiency of hardwood drying has improved by 15% since the 1970s, although no significant savings have been realised for softwood. A survey estimating the energy efficiency and operating characteristics of 192 paper dryer sections has been conducted. Drying energy was found to increase to nearly 60% of the total energy used in the early 1980s, but has fallen over the last decade, representing 23% of the total in 1993. These results have demonstrated that effective energy saving measures, such as improved pressing and heat recovery, have been successfully implemented since the 1970s. Artificial neural networks have successfully been applied to model process characteristics of microwave and convective drying of paper coated gypsum cove. Parameters modelled have included product moisture loss, core gypsum temperature and quality factors relating to paper burning and bubbling defects. Evaluation of thermal and dielectric properties have highlighted gypsum's heat sensitive characteristics in convective and electromagnetic regimes. Modelling experimental data has shown that the networks were capable of simulating drying process characteristics to a high degree of accuracy. Product weight and temperature were predicted to within 0.5% and 5C of the target data respectively. Furthermore, it was demonstrated that the underlying properties of the data could be predicted through a high level of input noise.
Resumo:
Optical data communication systems are prone to a variety of processes that modify the transmitted signal, and contribute errors in the determination of 1s from 0s. This is a difficult, and commercially important, problem to solve. Errors must be detected and corrected at high speed, and the classifier must be very accurate; ideally it should also be tunable to the characteristics of individual communication links. We show that simple single layer neural networks may be used to address these problems, and examine how different input representations affect the accuracy of bit error correction. Our results lead us to conclude that a system based on these principles can perform at least as well as an existing non-trainable error correction system, whilst being tunable to suit the individual characteristics of different communication links.
Resumo:
Optical data communication systems are prone to a variety of processes that modify the transmitted signal, and contribute errors in the determination of 1s from 0s. This is a difficult, and commercially important, problem to solve. Errors must be detected and corrected at high speed, and the classifier must be very accurate; ideally it should also be tunable to the characteristics of individual communication links. We show that simple single layer neural networks may be used to address these problems, and examine how different input representations affect the accuracy of bit error correction. Our results lead us to conclude that a system based on these principles can perform at least as well as an existing non-trainable error correction system, whilst being tunable to suit the individual characteristics of different communication links.
Resumo:
Background Lifelong surveillance after endovascular repair (EVAR) of abdominal aortic aneurysms (AAA) is considered mandatory to detect potentially life-threatening endograft complications. A minority of patients require reintervention but cannot be predictively identified by existing methods. This study aimed to improve the prediction of endograft complications and mortality, through the application of machine-learning techniques. Methods Patients undergoing EVAR at 2 centres were studied from 2004-2010. Pre-operative aneurysm morphology was quantified and endograft complications were recorded up to 5 years following surgery. An artificial neural networks (ANN) approach was used to predict whether patients would be at low- or high-risk of endograft complications (aortic/limb) or mortality. Centre 1 data were used for training and centre 2 data for validation. ANN performance was assessed by Kaplan-Meier analysis to compare the incidence of aortic complications, limb complications, and mortality; in patients predicted to be low-risk, versus those predicted to be high-risk. Results 761 patients aged 75 +/- 7 years underwent EVAR. Mean follow-up was 36+/- 20 months. An ANN was created from morphological features including angulation/length/areas/diameters/ volume/tortuosity of the aneurysm neck/sac/iliac segments. ANN models predicted endograft complications and mortality with excellent discrimination between a low-risk and high-risk group. In external validation, the 5-year rates of freedom from aortic complications, limb complications and mortality were 95.9% vs 67.9%; 99.3% vs 92.0%; and 87.9% vs 79.3% respectively (p0.001) Conclusion This study presents ANN models that stratify the 5-year risk of endograft complications or mortality using routinely available pre-operative data.
Resumo:
One major drawback of coherent optical orthogonal frequency-division multiplexing (CO-OFDM) that hitherto remains unsolved is its vulnerability to nonlinear fiber effects due to its high peak-to-average power ratio. Several digital signal processing techniques have been investigated for the compensation of fiber nonlinearities, e.g., digital back-propagation, nonlinear pre- and post-compensation and nonlinear equalizers (NLEs) based on the inverse Volterra-series transfer function (IVSTF). Alternatively, nonlinearities can be mitigated using nonlinear decision classifiers such as artificial neural networks (ANNs) based on a multilayer perceptron. In this paper, ANN-NLE is presented for a 16QAM CO-OFDM system. The capability of the proposed approach to compensate the fiber nonlinearities is numerically demonstrated for up to 100-Gb/s and over 1000km and compared to the benchmark IVSTF-NLE. Results show that in terms of Q-factor, for 100-Gb/s at 1000km of transmission, ANN-NLE outperforms linear equalization and IVSTF-NLE by 3.2dB and 1dB, respectively.
Resumo:
An overview of neural networks, covering multilayer perceptrons, radial basis functions, constructive algorithms, Kohonen and K-means unupervised algorithms, RAMnets, first and second order training methods, and Bayesian regularisation methods.
Resumo:
The scaling problems which afflict attempts to optimise neural networks (NNs) with genetic algorithms (GAs) are disclosed. A novel GA-NN hybrid is introduced, based on the bumptree, a little-used connectionist model. As well as being computationally efficient, the bumptree is shown to be more amenable to genetic coding lthan other NN models. A hierarchical genetic coding scheme is developed for the bumptree and shown to have low redundancy, as well as being complete and closed with respect to the search space. When applied to optimising bumptree architectures for classification problems the GA discovers bumptrees which significantly out-perform those constructed using a standard algorithm. The fields of artificial life, control and robotics are identified as likely application areas for the evolutionary optimisation of NNs. An artificial life case-study is presented and discussed. Experiments are reported which show that the GA-bumptree is able to learn simulated pole balancing and car parking tasks using only limited environmental feedback. A simple modification of the fitness function allows the GA-bumptree to learn mappings which are multi-modal, such as robot arm inverse kinematics. The dynamics of the 'geographic speciation' selection model used by the GA-bumptree are investigated empirically and the convergence profile is introduced as an analytical tool. The relationships between the rate of genetic convergence and the phenomena of speciation, genetic drift and punctuated equilibrium arc discussed. The importance of genetic linkage to GA design is discussed and two new recombination operators arc introduced. The first, linkage mapped crossover (LMX) is shown to be a generalisation of existing crossover operators. LMX provides a new framework for incorporating prior knowledge into GAs.Its adaptive form, ALMX, is shown to be able to infer linkage relationships automatically during genetic search.