20 resultados para AQUEOUS 2-PHASE SYSTEMS

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA binding fusion protein, LacI-His6-GFP, together with the conjugate PEG-IDA-Cu(II) (10 kDa) was evaluated as a dual affinity system for the pUC19 plasmid extraction from an alkaline bacterial cell lysate in poly(ethylene glycol) (PEG)/dextran (DEX) aqueous two-phase systems (ATPS). In a PEG 600-DEX 40 ATPS containing 0.273 nmol of LacI fusion protein and 0.14% (w/w) of the functionalised PEG-IDA-Cu(II), more than 72% of the plasmid DNA partitioned to the PEG phase, without RNA or genomic DNA contamination as evaluated by agarose gel electrophoresis. In a second extraction stage, the elution of pDNA from the LacI binding complex proved difficult using either dextran or phosphate buffer as second phase, though more than 75% of the overall protein was removed in both systems. A maximum recovery of approximately 27% of the pCU19 plasmid was achieved using the PEG-dextran system as a second extraction system, with 80-90% of pDNA partitioning to the bottom phase. This represents about 7.4 microg of pDNA extracted per 1 mL of pUC19 desalted lysate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The affinity isolation of pre-purified plasmid DNA (pDNA) from model buffer solutions using native and poly(ethylene glycol) (PEG) derivatized zinc finger–GST (Glutathione-S-Transferase) fusion protein was examined in PEG–dextran (DEX) aqueous two-phase systems (ATPSs). In the absence of pDNA, partitioning of unbound PEGylated fusion protein into the PEG-rich phase was confirmed with 97.5% of the PEGylated fusion protein being detected in the PEG phase of a PEG 600–DEX 40 ATPS. This represents a 1322-fold increase in the protein partition coefficient in comparison to the non-PEGylated protein (Kc = 0.013). In the presence of pDNA containing a specific oligonucleotide recognition sequence, the zinc finger moiety of the PEGylated fusion protein bound to the plasmid and steered the complex to the PEG-rich phase. An increase in the proportion of pDNA that partitioned to the PEG-rich phase was observed as the concentration of PEGylated fusion protein was increased. Partitioning of the bound complex occurred to such an extent that no DNA was detected by the picogreen assay in the dextran phase. It was also possible to partition pDNA using a non-PEGylated (native) zinc finger–GST fusion protein in a PEG 1000–DEX 500 ATPS. In this case the native ligand accumulated mainly in the PEG phase. These results indicate good prospects for the design of new plasmid DNA purification methods using fusion proteins as affinity ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of surfactant monolayers is certainly not a new technique, but the application of monolayer studies to elucidate controlling factors in liposome design remains an underutilised resource. Using a Langmuir-Blodgett trough, pure and mixed lipid monolayers can be investigated, both for their interactions within the monolayer, and for interfacial interactions with drugs in the aqueous sub-phase. Despite these monolayers effectively being only half a bilayer, with a flat rather than curved structure, information from these studies can be effectively translated into liposomal systems. Here we outline the background, general protocols and application of Langmuir studies with a focus on their application in liposomal systems. A range of case studies are discussed which show how the system can be used to support its application in the development of liposome drug delivery. Examples include investigations into the effect of cholesterol within the liposome bilayer, understanding effective lipid packaging within the bilayer to promote water soluble and poorly soluble drug retention, the effect of alkyl chain length on lipid packaging, and drug-monolayer electrostatic interactions that promote bilayer repackaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the research carried out in this report was to observe the first ever in-situ sonochemical reaction in the NMR Spectrometer in the megahertz region of ultrasound. Several reactions were investigated as potential systems for a sonochemical reaction followed by NMR spectroscopy. The primary problem to resolve when applying ultrasound to a chemical reaction is that of heating. Ultrasound causes the liquid to move and produces 'hot spots' resulting in an increase in sample temperature. The problem was confronted by producing a device that would counteract this effect and so remove the need to account for heating. However, the design of the device limited the length of time during which it would function. Longer reaction times were required to enable observations to be carried out in the NMR spectrometer. The fIrst and most obvious reactions attempted were those of the well-known ultrasonic dosimeter. Such a reaction would, theoretically, enable the author to simultaneously observe a reaction and determine the exact power entering the system for direct comparison of results. Unfortunately, in order to monitor the reactions in the NMR spectrometer the reactant concentrations had to be signifIcantly increased, which resulted in a notable increase in reaction time, making the experiment too lengthy to follow in the time allocated. The Diels-Alder Reaction is probably one of the most highly investigated reaction systems in the field of chemistry and it was this to which the author turned her attention. Previous authors have carried out ultrasonic investigations, with considerable success, for the reaction of anthracene with maleic anhydride. It was this reaction in particular that was next attempted. The first ever sonochemically enhanced reaction using a frequency of ultrasound in the megahertz (MHz) region was successfully carried out as bench experiments. Due to the complexity of the component reactants the product would precipitate from the solution and because the reaction could only be monitored by its formation, it was not possible to observe the reaction in the NMR spectrometer. The solvolysis of 2-chloro-2-methylpropane was examined in various solvent systems; the most suitable of which was determined to be aqueous 2-methylpropan-2-ol. The experiment was successfully enhanced by the application of ultrasound and monitored in-situ in the NMR spectrometer. The increase in product formation of an ultrasonic reaction over that of a traditional thermal reaction occurred. A range of 1.4 to 2.9 fold improvement was noted, dependent upon the reaction conditions investigated. An investigation into the effect of sonication upon a large biological molecule, in this case aqueous lysozyme, was carried out. An easily observed effect upon the sample was noted but no explanation for the observed effects could be established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of Cs on the structure and basicity of nanocrystalline MgO was assessed via electron microscopy, CO2 chemisorption, XRD and XPS. Caesium incorporation via co-precipitation under supercritical conditions generates Cs2Mg(CO3)2 nanocrystallites with an enhanced density and strength of surface base sites. Wet impregnation proved less effective for modifying MgO nanocrystals. A strong synergy between Cs and Mg components in the co-precipitated material dramatically enhanced the rate of tributyrin transesterification with methanol relative to undoped MgO and homogeneous Cs2CO3 catalysts. On-stream deactivation of Cs-doped MgO reflects heavy surface carbon deposition and loss of the high activity Cs2Mg(CO3)2 phase due to limited Cs dissolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high gains in performance predicted for optical immersion are difficult to achieve in practice due to total internal reflection at the lens/detector interface. By reducing the air gap at this interface optical tunneling becomes possible and the predicted gains can be realized in practical devices. Using this technique we have demonstrated large performance gains by optically immersing mid-infrared heterostructure InA1Sb LEDs and photodiodes using hypershperical germanium lenses. The development of an effective method of optical immersion that gives excellent optical coupling has produced a photodiode with a peak room temperature detectivity (D*) of 5.3 x 109 cmHz½W-1 at λpeak=5.4μm and a 40° field of view. A hyperspherically immersed LED showed a f-fold improvement in the external efficiency, and a 3-fold improvement in the directionality compared with a conventional planar LED for f/2 optical systems. The incorporation of these uncooled devices in a White cell produced a NO2 gas sensing system with 2 part-per-million sensitivity, with an LED drive current of <5mA. These results represent a significant advance in the use of solid state devices for portable gas sensing systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the effects of the composition of impregnating solution and heat treatment conditions on the activity of catalytic systems for the low-temperature oxidation of CO obtained by the impregnation of Busofit carbon-fiber cloth with aqueous solutions of palladium, copper, and iron salts. The formation of an active phase in the synthesized catalysts at different stages of their preparation was examined with the use of differential thermal and thermogravimetric analyses, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and elemental spectral analysis. The catalytic system prepared by the impregnation of electrochemically treated Busofit with the solutions of PdCl, FeCl, CuBr, and Cu(NO ) and activated under optimum conditions ensured 100% CO conversion under a respiratory regime at both low (0.03%) and high (0.5%) carbon monoxide contents of air. It was found that the activation of a catalytic system at elevated temperatures (170-180°C) leads to the conversion of Pd(II) into Pd(I), which was predominantly localized in a near-surface layer. The promoting action of copper nitrate consists in the formation of a crystalline phase of the rhombic atacamite CuCl(OH). The catalyst surface is finally formed under the conditions of a catalytic reaction, when a joint Pd(I)-Cu(I) active site is formed. © 2014 Pleiades Publishing, Ltd.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Mass transfer rates were studied using the falling drop method. Cibacron Blue 3 GA dye was the transferring solute from the salt phase to the PEG phase. Measurements were undertaken for several concentrations of the dye and the phase-forming solutes and with a range of different drop sizes, e.g. 2.8, 3.0 and 3.7 mm. The dye was observed to be present in the salt phase as finely dispersed solids but a model confirmed that the mass transfer process could still be described by an equation based upon the Whitman two-film model. The overall mass transfer coefficient increased with increasing concentration of the dye. The apparent mass transfer coefficient ranged from 1 x 10-5 to 2 x 10 -4 m/s. Further experiments suggested that mass transfer was enhanced at high concentration by several mechanisms. The dye was found to change the equilibrium composition of the two phases, leading to transfer of salt between the drop and continuous phases. It also lowered the interfacial tension (i.e. from 1.43 x 10-4 N/m for 0.01% w/w dye concentration to 1.07 x 10-4 N/m for 0.2% w/w dye concentration) between the two phases, which could have caused interfacial instabilities (Marangoni effects). The largest drops were deformable, which resulted in a significant increase in the mass transfer rate. Drop size distribution and Sauter mean drop diameter were studied on-line in a 1 litre agitated vessel using a laser diffraction technique. The effects of phase concentration, dispersed phase hold-up and impeller speed were investigated for the salt-PEG system. An increase in agitation speed in the range 300 rpm to 1000 rpm caused a decrease in mean drop diameter, e.g. from 50 m to 15 m. A characteristic bimodal drop size distribution was established within a very short time. An increase in agitation rate caused a shift of the larger drop size peak to a smaller size.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fibre-optic communications systems have traditionally carried data using binary (on-off) encoding of the light amplitude. However, next-generation systems will use both the amplitude and phase of the optical carrier to achieve higher spectral efficiencies and thus higher overall data capacities(1,2). Although this approach requires highly complex transmitters and receivers, the increased capacity and many further practical benefits that accrue from a full knowledge of the amplitude and phase of the optical field(3) more than outweigh this additional hardware complexity and can greatly simplify optical network design. However, use of the complex optical field gives rise to a new dominant limitation to system performance-nonlinear phase noise(4,5). Developing a device to remove this noise is therefore of great technical importance. Here, we report the development of the first practical ('black-box') all-optical regenerator capable of removing both phase and amplitude noise from binary phase-encoded optical communications signals.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this letter, a novel phase noise estimation scheme has been proposed for coherent optical orthogonal frequency division multiplexing systems, the quasi-pilot-aided method. In this method, the phases of transmitted pilot subcarriers are deliberately correlated to the phases of data subcarriers. Accounting for this correlation in the receiver allows the required number of pilots needed for a sufficient estimation and compensation of phase noise to be reduced by a factor of 2 in comparison with the traditional pilot-aided phase noise estimation method. We carried out numerical simulation of a 40 Gb/s single polarization transmission system, and the outcome of the investigation indicates that by applying quasi-pilot-aided phase estimation, only four pilot subcarriers are needed for effective phase noise compensation. © 2014 IEEE.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The relatively high phase noise of coherent optical systems poses unique challenges for forward error correction (FEC). In this letter, we propose a novel semianalytical method for selecting combinations of interleaver lengths and binary Bose-Chaudhuri-Hocquenghem (BCH) codes that meet a target post-FEC bit error rate (BER). Our method requires only short pre-FEC simulations, based on which we design interleavers and codes analytically. It is applicable to pre-FEC BER ∼10-3, and any post-FEC BER. In addition, we show that there is a tradeoff between code overhead and interleaver delay. Finally, for a target of 10-5, numerical simulations show that interleaver-code combinations selected using our method have post-FEC BER around 2× target. The target BER is achieved with 0.1 dB extra signal-to-noise ratio.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A family of tungstated zirconia solid acid catalysts were synthesised via wet impregnation and subsequent thermochemical processing for the transformation of glucose to 5-hydroxymethylfurfural (HMF). Acid strength increased with tungsten loading and calcination temperature, associated with stabilisation of tetragonal zirconia. High tungsten dispersions of between 2 and 7 W atoms·nm−2 were obtained in all cases, equating to sub-monolayer coverages. Glucose isomerisation and subsequent dehydration via fructose to HMF increased with W loading and calcination temperature up to 600 °C, indicating that glucose conversion to fructose was favoured over weak Lewis acid and/or base sites associated with the zirconia support, while fructose dehydration and HMF formation was favoured over Brönsted acidic WOx clusters. Aqueous phase reforming of steam exploded rice straw hydrolysate and condensate was explored heterogeneously for the first time over a 10 wt% WZ catalyst, resulting in excellent HMF yields as high as 15% under mild reaction conditions.