3 resultados para APICAL PORTER
em Aston University Research Archive
Resumo:
The evolutionarily conserved apical determinant Crumbs (Crb) is essential for maintaining apicobasal polarity and integrity of many epithelial tissues [1]. Crb levels are crucial for cell polarity and homeostasis, yet strikingly little is known about its trafficking or the mechanism of its apical localization. Using a newly established, liposome-based system described here, we determined Crb to be an interaction partner and cargo of the retromer complex. Retromer is essential for the retrograde transport of numerous transmembrane proteins from endosomes to the trans-Golgi network (TGN) and is conserved between plants, fungi, and animals [2]. We show that loss of retromer function results in a substantial reduction of Crb in Drosophila larvae, wing discs, and the follicle epithelium. Moreover, loss of retromer phenocopies loss of crb by preventing apical localization of key polarity molecules, such as atypical protein kinase C (aPKC) and Par6 in the follicular epithelium, an effect that can be rescued by overexpression of Crb. Additionally, loss of retromer results in multilayering of the follicular epithelium, indicating that epithelial integrity is severely compromised. Our data reveal a mechanism for Crb trafficking by retromer that is vital for maintaining Crb levels and localization. We also show a novel function for retromer in maintaining epithelial cell polarity.
Resumo:
Comprehensive coverage of all aspects of Michael Porter's works Contributions from leading authorities across the disciplines Contains response from Porter Harvard professor, Michael Porter has been one of the most influential figures in strategic management research over the last three decades. He infused a rigorous theoretical framework of industrial organization economics with the then still embryonic field of strategic management and elevated it to its current status as an academic discipline. Porter's outstanding career is also characterized by its cross-disciplinary nature. Following his most important work on strategic management, he then made a leap to the policy side and dealt with a completely different set of analytical units. More recently he has made a foray into inner city development, environmental regulations, and health care services. Throughout these explorations Porter has maintained his integrative approach, seeking a road that links management case studies and the general model building of mainstream economics. With expert contributors from a range of disciplines including strategic management, economic development, economic geography, and planning, this book assesses the contribution Michael Porter has made to these respective disciplines. It clarifies the sources of tension and controversy relating to all the major strands of Porter's work, and provides academics, students, and practitioners with a critical guide for the application of Porter's models. The book highlights that while many of the criticisms of Porter's ideas are valid, they are almost an inevitable outcome for a scholar who has sought to build bridges across wide disciplinary valleys. His work has provided others with a set of frameworks to explore in more depth the nature of competition, competitive advantage, and clusters from a range of vantage points.
Resumo:
The 'ion-trapping' hypothesis suggests that the intracellular concentration of acidic non-steroidal anti-inflammatory drugs in gastric epithelial cells could be much higher than in the gastric lumen, and that such accumulation could contribute to their gastrotoxicity. Our aim was to examine the effect of the pH of the apical medium on the apical to basal transfer of the acidic drug indomethacin (pK a 4.5) across a gastric mucous epithelial cell monolayer, and to determine whether indomethacin accumulated in cells exposed to a low apical pH. Guinea-pig gastric mucous epithelial cells were grown on porous membrane culture inserts (Transwells®) for 72 h. Transfer and accumulation of [ 14C] indomethacin were assessed by scintillation counting. Transfer of [ 3H]mannitol and measurement of trans-epithelial electrical resistance were used to assess integrity of the monolayer. Distribution of [ 14C] urea was used to estimate the intracellular volume of the monolayer. The monolayer was not disrupted by exposure of the apical face to media of pH ≥ 3, or by indomethacin. Transfer of indomethacin (12 μM) to the basal medium increased with decreasing apical medium pH. The apparent permeability of the undissociated acid was estimated to be five times that of the anion. The intracellular concentration of indomethacin was respectively 5.3, 4.1 and 4.3 times that in the apical medium at pH 5.5, 4.5 and 3.0. In conclusion, this study represents the first direct demonstration that indomethacin accumulates in gastric epithelial cells exposed to low apical pH. However, accumulation of indomethacin was moderate and the predictions of the ion-trapping hypothesis were not met, probably due to the substantial permeability of anionic indomethacin across membranes. © 2006 Elsevier B.V. All rights reserved.