4 resultados para ANTIBODY RECOGNITION
em Aston University Research Archive
Resumo:
Glyoxal, a reactive aldehyde, is a decomposition product of lipid hydroperoxides, oxidative deoxyribose breakdown, or autoxidation of sugars, such as glucose. It readily forms DNA adducts, generating potential carcinogens such as glyoxalated deoxycytidine (gdC). A major drawback in assessing gdC formation in cellular DNA has been methodologic sensitivity. We have developed an mAb that specifically recognizes gdC. Balb/c mice were immunized with DNA, oxidatively modified by UVC/hydrogen peroxide in the presence of endogenous metal ions. Although UVC is not normally considered an oxidizing agent, a UVC/hydrogen peroxide combination may lead to glyoxalated bases arising from hydroxyl radical damage to deoxyribose. This damaging system was used to induce numerous oxidative lesions including glyoxal DNA modifications, from which resulted a number of clones. Clone F3/9/H2/G5 showed increased reactivity toward glyoxal-modified DNA greater than that of the immunizing antigen. ELISA unequivocally showed Ab recognition toward gdC, which was confirmed by gas chromatography-mass spectrometry of the derivatized adduct after formic acid hydrolysis to the modified base. Binding of Ab F3/9 with glyoxalated and untreated oligomers containing deoxycytidine, deoxyguanosine, thymidine, and deoxyadenosine assessed by ELISA produced significant recognition (p 0.0001) of glyoxal-modified deoxycytidine greater than that of untreated oligomer. Additionally, inhibition ELISA studies using the glyoxalated and native deoxycytidine oligomer showed increased recognition for gdC with more than a 5-fold difference in IC50 values. DNA modified with increasing levels of iron (II)/EDTA produced a dose-dependent increase in Ab F3/9 binding. This was reduced in the presence of catalase or aminoguanidine. We have validated the potential of gdC as a marker of oxidative DNA damage and showed negligible cross-reactivity with 8-oxo-2'-deoxyguanosine or malondialdehyde-modified DNA as well as its utility in immunocytochemistry. Formation of the gdC adduct may involve intermediate structures; however, our results strongly suggest Ab F3/9 has major specificity for the predominant product, 5-hydroxyacetyl-dC.
Resumo:
Cells undergoing apoptosis in vivo are rapidly detected and cleared by phagocytes. Swift recognition and removal of apoptotic cells is important for normal tissue homeostasis and failure in the underlying clearance mechanisms has pathological consequences associated with inflammatory and auto-immune diseases. Cell cultures in vitro usually lack the capacity for removal of non-viable cells because of the absence of phagocytes and, as such, fail to emulate the healthy in vivo micro-environment from which dead cells are absent. While a key objective in cell culture is to maintain viability at maximal levels, cell death is unavoidable and non-viable cells frequently contaminate cultures in significant numbers. Here we show that the presence of apoptotic cells in monoclonal antibody-producing hybridoma cultures has markedly detrimental effects on antibody productivity. Removal of apoptotic hybridoma cells by macrophages at the time of seeding resulted in 100% improved antibody productivity that was, surprisingly to us, most pronounced late on in the cultures. Furthermore, we were able to recapitulate this effect using novel super-paramagnetic Dead-Cert Nanoparticles to remove non-viable cells simply and effectively at culture seeding. These results (1) provide direct evidence that apoptotic cells have a profound influence on their non-phagocytic neighbors in culture and (2) demonstrate the effectiveness of a simple dead-cell removal strategy for improving antibody manufacture in vitro.
Resumo:
Monoclonal and polyclonaI antibodies have been produced for use in immunological assays for the detection of Burkholderia pseudomallei and Burkholderia mallei. Monoclonal antibodies recognising a high molecular weight polysaccharide material found in some strains of both species have been shown to be effective in recognising B. pseudomallei and B. mallei and distinguishing them from other organisms. The high molecular weight polysaccharide material is thought to be the capsule of B. pseudomallei and B. mallei and may have important links with virulence. B. pseudomallei and B. mallei are known to be closely related, sharing many epitopes, but antigenic variation has been demonstrated within both the species. The lipopolysaccharide from strains of B. pseudomal/ei and B. mallei has been isolated and the silver stain profiles found to be visually very similar. A monoclonal antibody raised to B. mallei LPS has been found to recognise both B. mallei and B. pseudomallei strains. However, in a small number of B. pseudomallei strains a visually atypical LPS profile has been demonstrated. A monoclonal ant ibody rai sed against this atypical LPS showed no recognition of the typical LPS profile of either B. mallei or B. pseudomallei. This atypical LPS structure has not been reported and may be immunologically distinct from the typical LPS. Molecular biology and antibody engineering techniques have been used in an attempt to produce single-chain antibody fragments reactive to B. pseudomallei. Sequencing of one of the single-chain antibody fragments produced showed high homology with murine immunoglobulin genes, but none of the single-chain antibody fragments were found to be specific to B. pselldomallei.
Resumo:
Cells dying by apoptosis are normally cleared by phagocytes through mechanisms that can suppress inflammation and immunity. Molecules of the innate immune system, the pattern recognition receptors (PRRs), are able to interact not only with conserved structures on microbes (pathogen-associated molecular patterns, PAMPs) but also with ligands displayed by apoptotic cells. We reasoned that PRRs might therefore interact with structures on apoptotic cells-apoptotic cell-associated molecular patterns (ACAMPs)-that are analogous to PAMPs. Here we show that certain monoclonal antibodies raised against the prototypic PAMP, lipopolysaccharide (LPS), can crossreact with apoptotic cells. We demonstrate that one such antibody interacts with a constitutively expressed intracellular protein, laminin-binding protein, which translocates to the cell surface during apoptosis and can interact with cells expressing the prototypic PRR, mCD14 as well as with CD14-negative cells. Anti-LPS cross reactive epitopes on apoptotic cells colocalised with annexin V-and C1q-binding sites on vesicular regions of apoptotic cell surfaces and were released associated with apoptotic cell-derived microvesicles (MVs). These results confirm that apoptotic cells and microbes can interact with the immune system through common elements and suggest that anti-PAMP antibodies could be used strategically to characterise novel ACAMPs associated not only with apoptotic cells but also with derived MVs. © 2013 Macmillan Publishers Limited All rights reserved.