16 resultados para ANTI-PHASE BOUNDARIES
em Aston University Research Archive
Resumo:
The pattern of illumination on an undulating surface can be used to infer its 3-D form (shape from shading). But the recovery of shape would be invalid if the shading actually arose from reflectance variation. When a corrugated surface is painted with an albedo texture, the variation in local mean luminance (LM) due to shading is accompanied by a similar modulation in texture amplitude (AM). This is not so for reflectance variation, nor for roughly textured surfaces. We used a haptic matching technique to show that modulations of texture amplitude play a role in the interpretation of shape from shading. Observers were shown plaid stimuli comprising LM and AM combined in-phase (LM+AM) on one oblique and in anti-phase (LM-AM) on the other. Stimuli were presented via a modified ReachIN workstation allowing the co-registration of visual and haptic stimuli. In the first experiment, observers were asked to adjust the phase of a haptic surface, which had the same orientation as the LM+AM combination, until its peak in depth aligned with the visually perceived peak. The resulting alignments were consistent with the use of a lighting-from-above prior. In the second experiment, observers were asked to adjust the amplitude of the haptic surface to match that of the visually perceived surface. Observers chose relatively large amplitude settings when the haptic surface was oriented and phase-aligned with the LM+AM cue. When the haptic surface was aligned with the LM-AM cue, amplitude settings were close to zero. Thus the LM/AM phase relation is a significant visual depth cue, and is used to discriminate between shading and reflectance variations. [Supported by the Engineering and Physical Sciences Research Council, EPSRC].
Resumo:
When a textured surface is modulated in depth and illuminated, the level of illumination varies across the surface, producing coarse-scale luminance modulations (LM) and amplitude modulation (AM) of the fine-scale texture. If the surface has an albedo texture (reflectance variation) then the LM and AM components are always in-phase, but if the surface has a relief texture the phase relation between LM and AM varies with the direction and nature of the illuminant. We showed observers sinusoidal luminance and amplitude modulations of a binary noise texture, in various phase relationships, in a paired-comparisons design. In the first experiment, the combinations under test were presented in different temporal intervals. Observers indicated which interval contained the more depthy stimulus. LM and AM in-phase were seen as more depthy than LM alone which was in turn more depthy than LM and AM in anti-phase, but the differences were weak. In the second experiment the combinations under test were presented in a single interval on opposite obliques of a plaid pattern. Observers were asked to indicate the more depthy oblique. Observers produced the same depth rankings as before, but now the effects were more robust and significant. Intermediate LM/AM phase relationships were also tested: phase differences less than 90 deg were seen as more depthy than LM-only, while those greater than 90 deg were seen as less depthy. We conjecture that the visual system construes phase offsets between LM and AM as indicating relief texture and thus perceives these combinations as depthy even when their phase relationship is other than zero. However, when different LM/AM pairs are combined in a plaid, the signals on the obliques are unlikely to indicate corrugations of the same texture, and in this case the out-of-phase pairing is seen as flat. [Supported by the Engineering and Physical Sciences Research Council (EPSRC)].
Resumo:
To decouple interocular suppression and binocular summation we varied the relative phase of mask and target in a 2IFC contrast-masking paradigm. In Experiment I, dichoptic mask gratings had the same orientation and spatial frequency as the target. For in-phase masking, suppression was strong (a log-log slope of ∼1) and there was weak facilitation at low mask contrasts. Anti-phase masking was weaker (a log-log slope of ∼0.7) and there was no facilitation. A two-stage model of contrast gain control [Meese, T.S., Georgeson, M.A. and Baker, D.H. (2006). Binocular contrast vision at and above threshold. Journal of Vision, 6: 1224-1243] provided a good fit to the in-phase results and fixed its free parameters. It made successful predictions (with no free parameters) for the anti-phase results when (A) interocular suppression was phase-indifferent but (B) binocular summation was phase sensitive. Experiments II and III showed that interocular suppression comprised two components: (i) a tuned effect with an orientation bandwidth of ∼±33° and a spatial frequency bandwidth of >3 octaves, and (ii) an untuned effect that elevated threshold by a factor of between 2 and 4. Operationally, binocular summation was more tightly tuned, having an orientation bandwidth of ∼±8°, and a spatial frequency bandwidth of ∼0.5 octaves. Our results replicate the unusual shapes of the in-phase dichoptic tuning functions reported by Legge [Legge, G.E. (1979). Spatial frequency masking in human vision: Binocular interactions. Journal of the Optical Society of America, 69: 838-847]. These can now be seen as the envelope of the direct effects from interocular suppression and the indirect effect from binocular summation, which contaminates the signal channel with a mask that has been suppressed by the target. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
The human visual system is sensitive to second-order modulations of the local contrast (CM) or amplitude (AM) of a carrier signal. Second-order cues are detected independently of first-order luminance signals; however, it is not clear why vision should benet from second-order sensitivity. Analysis of the first-and second-order contents of natural images suggests that these cues tend to occur together, but their phase relationship varies. We have shown that in-phase combinations of LM and AM are perceived as a shaded corrugated surface whereas the anti-phase combination can be seen as corrugated when presented alone or as a flat material change when presented in a plaid containing the in-phase cue. We now extend these findings using new stimulus types and a novel haptic matching task. We also introduce a computational model based on initially separate first-and second-order channels that are combined within orientation and subsequently across orientation to produce a shading signal. Contrast gain control allows the LM + AM cue to suppress responses to the LM-AM when presented in a plaid. Thus, the model sees LM -AM as flat in these circumstances. We conclude that second-order vision plays a key role in disambiguating the origin of luminance changes within an image. © ARVO.
Resumo:
The application of a rapid screening method for the construction of ternary phase diagrams is described for the first time, providing detailed visualization of phase boundaries in solvent-mediated blends. Our new approach rapidly identifies ternary blend compositions that afford optically clear materials, useful for applications where transparent films are necessary. The use of 96-well plates and a scanning plate reader has enabled rapid optical characterization to be carried out by transmission spectrophotometry (450 nm), whilst the nature and extent of crystallinity was examined subsequently by wide angle X-ray scattering (WAXS). The moderating effect of cellulose acetate butyrate can be visualized as driving the position of the phase boundaries in poly(l-lactic acid)/polycaprolactone (PLLA/PCL) blends. More surprisingly, the boundaries are critically dependent on the molecular weight of the crystallizable PLLA and PCL, with higher molecular weight polymers leading to blends with reduced phase separation. On the other hand, the propensity to crystallize was more evident in shorter chains. WAXS provides a convenient way of characterizing the contribution of the individual blend components to the crystalline regions across the range of blend compositions. © 2013 Society of Chemical Industry.
Resumo:
Interactions of wakes in a flow past a row of square bars, which is placed across a uniform flow, are investigated by numerical simulations and experiments on the tassumption that the flow is two-dimensional and incompressible. At small Reynolds numbers the flow is steady and symmetric with respect not only to streamwise lines through the center of each square bar but also to streamwise centerlines between adjacent square bars. However, the steady symmetric flow becomes unstable at larger Reynolds numbers and make a transition to a steady asymmetric flow with respect to the centerlines between adjacent square bars in some cases or to an oscillatory flow in other cases. It is found that vortices are shed synchronously from adjacent square bars in the same phase or in anti-phase depending upon the distance between the bars when the flow is oscillatory. The origin of the transition to the steady asymmetric flow is identified as a pitchfork bifurcation, while the oscillatory flows with synchronous shedding of vortices are clarified to originate from a Hopf bifurcation. The critical Reynolds numbers of the transitions are evaluated numerically and the bifurcation diagram of the flow is obtained.
Resumo:
Interactions between the wakes in a flow past a row of square bars are investigated by numerical simulations, the linear stability analysis and the bifurcation analysis. It is assumed that the row of square bars is placed across a uniform flow. Two-dimensional and incompressible flow field is also assumed. The flow is steady and symmetric along a streamwise centerline through the center of each square bar at low Reynolds numbers. However, it becomes unsteady and periodic in time at the Reynolds numbers larger than a critical value, and then the wakes behind the square bars become oscillatory. It is found by numerical simulations that vortices are shed synchronously from every couple of adjacent square bars in the same phase or in the anti-phase depending upon the distance between the bars. The synchronous shedding of vortices is clarified to occur due to an instability of the steady symmetric flow by the linear stability analysis. The bifurcation diagram of the flow is obtained and the critical Reynolds number of the instability is evaluated numerically.
Resumo:
We have devised a general scheme that reveals multiple duality relations valid for all multi-channel Luttinger Liquids. The relations are universal and should be used for establishing phase diagrams and searching for new non-trivial phases in low-dimensional strongly correlated systems. The technique developed provides universal correspondence between scaling dimensions of local perturbations in different phases. These multiple relations between scaling dimensions lead to a connection between different inter-phase boundaries on the phase diagram. The dualities, in particular, constrain phase diagram and allow predictions of emergence and observation of new phases without explicit model-dependent calculations. As an example, we demonstrate the impossibility of non-trivial phase existence for fermions coupled to phonons in one dimension. © 2013 EPLA.
Resumo:
A prodrug, temozolomide acid hexyl ester (TMZA-HE), was identified as a skin-deliverable congener for temozolomide (TMZ) to treat skin cancers. Poor solubility and instability of TMZA-HE rendered a serious challenge for formulation of a topical preparation. Microemulsions (ME) were chosen as a potential vehicle for TMZA-HE topical preparations. ME systems were constructed with either oleic acid (OA) or isopropyl myristate (IPM) as the oil phase and tocopheryl (vitamin E) polyethylene glycol 1000 succinate (VE-TPGS) as a surfactant. Topical formulations of OA and IPM ME systems demonstrated beneficial solubilising ability and provided a stable environment for the prodrug, TMZA-HE. Significant differences between the microstructures of OA and IPM ME systems were revealed by freeze fracture electron microscopy (FFEM) and different loading abilities and permeation potencies between the two systems were also identified. In permeation studies, IPM ME systems, with inclusion of isopropyl alcohol (IPA) as a co-surfactant, significantly increased TMZA-HE permeation through silicon membranes and rat skin resulting in less drug retention within the skin, while OA ME systems demonstrated higher solubilising ability and a higher concentration of TMZA-HE retained within the skin. Therefore IPM ME systems are promising for transdermal delivery of TMZA-HE and OA ME systems may be a suitable choice for a topical formulation of TMZA-HE. © 2007 The Authors.
Resumo:
The new technology of combinational chemistry has been introduced to pharmaceutical companies, improving and making more efficient the process of drug discovery. Automated combinatorial chemistry in the solution-phase has been used to prepare a large number of compounds of anti-cancer screening. A library of caffeic acid derivatives has been prepared by the Knoevenagel condensation of aldehyde and active methylene reagents. These products have been screened against two murine adenocarcinoma cell lines (MAC) which are generally refractive to standard cytotoxic agents. The target of anti-proliferative action was the 12- and 15-lipoxygenase enzymes upon which these tumour cell lines have been shown to be dependent for proliferation and metastasis. Compounds were compared to a standard lipoxygenase inhibitor and if found to be active anti-proliferative agents were tested for their general cytotoxicity and lipoxygenase inhibition. A solid-phase bound catalyst, piperazinomethyl polystyrene, was devised and prepared for the improved generation of Knoevenagel condensation products. This piperazinomethyl polystyrene was compared to the traditional liquid catalyst, piperidine, and was found to reduce the amount of by-products formed during reaction and had the advantage of easy removal from the reaction. 13C NMR has been used to determine the E/Z stereochemistry of Knoevenagel condensation products. Soluble polymers have been prepared containing different building blocks pendant to the polymer backbone. Aldehyde building blocks incorporated into the polymer structure have been subjected to the Knoevenagel condensation. Cleavage of the resultant pendant molecules has proved that soluble linear polymers have the potential to generate combinatorial mixtures of known composition for biological testing. Novel catechol derivatives have been prepared by traditional solution-phase chemistry with the intention of transferring their synthesis to a solid-phase support. Catechol derivatives prepared were found to be active inhibitors of lipoxygenase. Soluble linear supports for the preparation of these active compounds were designed and tested. The aim was to develop a support suitable for the automated synthesis of libraries of catechol derivatives for biological screening.
Resumo:
Azidoprofen {2-(4-azidophenyl)propionic acid; AZP}, an azido-substituted arylalkanoic acid, was investigated as a model soft drug candidate for a potential topical non-steroidal anti-inflammatory agent (NSAIA). Reversed-phase high performance liquid chromatography (HPLC) methods were developed for the assay of AZP, a series of ester analogues and their· degradation products. 1H-NMR spectroscopy was also employed as an analytical method in selected cases. Reduction of the azido-group to the corresponding amine has been proposed as a potential detoxification mechanism for compounds bearing this substituent. An in vitro assay to measure the susceptibility of azides towards reduction was developed using dithiothreitol as a model reducing agent. The rate of reduction of AZP was found to be base-dependent, hence supporting the postulated mechanism of thiol-mediated reduction via nucleophilic attack by the thiolate anion. Prodrugs may enhance topical bioavailability through the manipulation of physico-chemical properties of the parent drug. A series of ester derivatives of AZP were investigated for their susceptibility to chemical and enzymatic hydrolysis, which regenerates the parent acid. Use of alcoholic cosolvents with differing alkyl functions to that of the ester resulted in transesterification reactions, which were found to be enzyme-mediated. The skin penetration of AZP was assessed using an in vitro hairless mouse skin model, and silastic membrane in some cases. The rate of permeation of AZP was found to be a similar magnitude to that of the well established NSAIA ibuprofen. Penetration rates were dependent on the vehicle pH and drug concentration when solutions were employed. In contrast, flux was independent of pH when suspension formulations were used. Pretreatment of the skin with various enhancer regimes, including oleic acid and azone in propylene glycol, promoted the penetration of AZP. An intense IR absorption due to the azide group serves as a highly diagnostic marker, enabling azido compounds to be detected in the outer layers of the· stratum corneum following their application to skin, using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). This novel application enabled a non-invasive examination of the percutaneous penetration enhancement of a model azido compound in vivo in man, in the presence of the enhancer oleic acid.
Resumo:
Reversed-pahse high-performance liquid chromatographic (HPLC) methods were developed for the assay of indomethacin, its decomposition products, ibuprofen and its (tetrahydro-2-furanyl)methyl-, (tetrahydro-2-(2H)pyranyl)methyl- and cyclohexylmethyl esters. The development and application of these HPLC systems were studied. A number of physico-chemical parameters that affect percutaneous absorption were investigated. The pKa values of indomethacin and ibuprofen were determined using the solubility method. Potentiometric titration and the Taft equation were also used for ibuprofen. The incorporation of ethanol or propylene glycol in the solvent resulted in an improvement in the aqueous solubility of these compounds. The partition coefficients were evaluated in order to establish the affinity of these drugs towards the stratum corneum. The stability of indomethacin and of ibuprofen esters were investigated and the effect of temperature and pH on the decomposition rates were studied. The effect of cetyltrimethylammonium bromide on the alkaline degradation of indomethacin was also followed. In the presence of alcohol, indomethacin alcoholysis was observed and the kinetics of decomposition were subjected to non-linear regression analysis and the rate constants for the various pathways were quantified. The non-isothermal, sufactant non-isoconcentration and non-isopH degradation of indomethacin were investigated. The analysis of the data was undertaken using NONISO, a BASIC computer program. The degradation profiles obtained from both non-iso and iso-kinetic studies show that there is close concordance in the results. The metabolic biotransformation of ibuprofen esters was followed using esterases from hog liver and rat skin homogenates. The results showed that the esters were very labile under these conditions. The presence of propylene glycol affected the rates of enzymic hydrolysis of the ester. The hydrolysis is modelled using an equation involving the dielectric constant of the medium. The percutaneous absorption of indomethacin and of ibuprofen and its esters was followed from solutions using an in vitro excised human skin model. The absorption profiles followed first order kinetics. The diffusion process was related to their solubility and to the human skin/solvent partition coefficient. The percutaneous absorption of two ibuprofen esters from suspensions in 20% propylene glycol-water were also followed through rat skin with only ibuprofen being detected in the receiver phase. The sensitivity of ibuprofen esters to enzymic hydrolysis compared to the chemical hydrolysis may prove valuable in the formulation of topical delivery systems.
Resumo:
The possible evaporation of lubricant in fluid film bearings has been investigated theoretically and by experiment using a radial flow hydrostatic bearing supplied with liquid refrigerant R114. Good correlation between measured and theoretical values was obtained using a bespoke computational fluid dynamic model in which the flow was assumed to be laminar and adiabatic. The effects of viscous dissipation and vapour generation within the fluid film are fully accounted for by applying a fourth order Runge-Kutta routine to satisfy the radial and filmwise transverse constraints of momentum, energy and mass conservation. The results indicate that the radial velocity profile remains parabolic while the flow remains in the liquid phase and that the radial rate of enthalpy generation is then constant across the film at a given radius. The results also show that evaporation will commence at a radial location determined by geometry and flow conditions and in fluid layers adjacent to the solid boundaries. Evaporation is shown to progress in the radial direction and the load carrying capacity of such a bearing is reduced significantly. Expressions for the viscosity of the liquid/vapour mixture found in the literature survey have not been tested against experimental data. A new formulation is proposed in which the suitable choice of a characteristic constant yields close representation to any of these expressions. Operating constraints imposed by the design of the experimental apparatus limited the extent of the surface over which evaporation could be obtained, and prevented clear identification of the most suitable relationship for the viscosity of the liquid/vapour mixture. The theoretical model was extended to examine the development of two phase flow in a rotating shaft face seal of uniform thickness. Previous theoretical analyses have been based on the assumption that the radial velocity profile of the flow is always parabolic, and that the tangential component of velocity varies linearly from the value at the rotating surface, to zero at the stationary surface. The computational fluid dynamic analysis shows that viscous shear and dissipation in the fluid adjacent to the rotating surface leads to developing evaporation with a consequent reduction in tangential shear forces. The tangential velocity profile is predicted to decay rapidly through the film, exhibiting a profile entirely different to that assumed by previous investigators. Progressive evaporation takes place close to the moving wall and does not occur completely at a single radial location, as has been claimed in earlier work.
Resumo:
Mucobromic and mucochloric acid were used as building blocks for the construction of a chemical combinatorial library of 3,4,5-trisubstituted 2(5H)-furanones. With these 2 butenolide building blocks, and eight alcohols a sublibrary of 16 dihalogenated 5-alkoxy-2(5H)-furanones was prepared. This sublibrary of 5-alkoxylated furanones was reacted with 16 amines generating a full size focussed combinatorial library of 256 individual compounds. This three dimensional combinatorial library of 3-halogen-4-amino-5-alkoxy-2(5H)-furanones was prepared around the benzimidazolyl furanone lead structure by applying a solution phase combinatorial chemistry concept. Typical representatives of the library were purified and fully characterized and one x-ray structures was recorded, additionally. The 3-bromo-4-benzimizazolyl-5-methoxy-2(5H)furanone, Br-A-l, showed an MIC of 8 μg/ml against the multiresistant Staphylococcus aureus ( MRSA). © 2006 Bentham Science Publishers Ltd.