7 resultados para ANOVA
em Aston University Research Archive
Resumo:
This article is aimed primarily at eye care practitioners who are undertaking advanced clinical research, and who wish to apply analysis of variance (ANOVA) to their data. ANOVA is a data analysis method of great utility and flexibility. This article describes why and how ANOVA was developed, the basic logic which underlies the method and the assumptions that the method makes for it to be validly applied to data from clinical experiments in optometry. The application of the method to the analysis of a simple data set is then described. In addition, the methods available for making planned comparisons between treatment means and for making post hoc tests are evaluated. The problem of determining the number of replicates or patients required in a given experimental situation is also discussed. Copyright (C) 2000 The College of Optometrists.
Resumo:
Analysis of variance (ANOVA) is the most efficient method available for the analysis of experimental data. Analysis of variance is a method of considerable complexity and subtlety, with many different variations, each of which applies in a particular experimental context. Hence, it is possible to apply the wrong type of ANOVA to data and, therefore, to draw an erroneous conclusion from an experiment. This article reviews the types of ANOVA most likely to arise in clinical experiments in optometry including the one-way ANOVA ('fixed' and 'random effect' models), two-way ANOVA in randomised blocks, three-way ANOVA, and factorial experimental designs (including the varieties known as 'split-plot' and 'repeated measures'). For each ANOVA, the appropriate experimental design is described, a statistical model is formulated, and the advantages and limitations of each type of design discussed. In addition, the problems of non-conformity to the statistical model and determination of the number of replications are considered. © 2002 The College of Optometrists.
Resumo:
To carry out an analysis of variance, several assumptions are made about the nature of the experimental data which have to be at least approximately true for the tests to be valid. One of the most important of these assumptions is that a measured quantity must be a parametric variable, i.e., a member of a normally distributed population. If the data are not normally distributed, then one method of approach is to transform the data to a different scale so that the new variable is more likely to be normally distributed. An alternative method, however, is to use a non-parametric analysis of variance. There are a limited number of such tests available but two useful tests are described in this Statnote, viz., the Kruskal-Wallis test and Friedmann’s analysis of variance.
Resumo:
If data are analysed using ANOVA, and a significant F value obtained, a more detailed analysis of the differences between the treatment means will be required. The best option is to plan specific comparisons among the treatment means before the experiment is carried out and test them using ‘contrasts’. In some circumstances, post-hoc tests may be necessary and experimenters should think carefully which of the many tests available should be used. Different tests can lead to different conclusions and careful consideration as to the appropriate test should be given in each circumstance.
Resumo:
Experiments combining different groups or factors and which use ANOVA are a powerful method of investigation in applied microbiology. ANOVA enables not only the effect of individual factors to be estimated but also their interactions; information which cannot be obtained readily when factors are investigated separately. In addition, combining different treatments or factors in a single experiment is more efficient and often reduces the number of replications required to estimate treatment effects adequately. Because of the treatment combinations used in a factorial experiment, the DF of the error term in the ANOVA is a more important indicator of the ‘power’ of the experiment than the number of replicates. A good method is to ensure, where possible, that sufficient replication is present to achieve 15 DF for each error term of the ANOVA. Finally, it is important to consider the design of the experiment because this determines the appropriate ANOVA to use. Some of the most common experimental designs used in the biosciences and their relevant ANOVAs are discussed by. If there is doubt about which ANOVA to use, the researcher should seek advice from a statistician with experience of research in applied microbiology.
Resumo:
In any investigation in optometry involving more that two treatment or patient groups, an investigator should be using ANOVA to analyse the results assuming that the data conform reasonably well to the assumptions of the analysis. Ideally, specific null hypotheses should be built into the experiment from the start so that the treatments variation can be partitioned to test these effects directly. If 'post-hoc' tests are used, then an experimenter should examine the degree of protection offered by the test against the possibilities of making either a type 1 or a type 2 error. All experimenters should be aware of the complexity of ANOVA. The present article describes only one common form of the analysis, viz., that which applies to a single classification of the treatments in a randomised design. There are many different forms of the analysis each of which is appropriate to the analysis of a specific experimental design. The uses of some of the most common forms of ANOVA in optometry have been described in a further article. If in any doubt, an investigator should consult a statistician with experience of the analysis of experiments in optometry since once embarked upon an experiment with an unsuitable design, there may be little that a statistician can do to help.
Resumo:
In Statnote 9, we described a one-way analysis of variance (ANOVA) ‘random effects’ model in which the objective was to estimate the degree of variation of a particular measurement and to compare different sources of variation in space and time. The illustrative scenario involved the role of computer keyboards in a University communal computer laboratory as a possible source of microbial contamination of the hands. The study estimated the aerobic colony count of ten selected keyboards with samples taken from two keys per keyboard determined at 9am and 5pm. This type of design is often referred to as a ‘nested’ or ‘hierarchical’ design and the ANOVA estimated the degree of variation: (1) between keyboards, (2) between keys within a keyboard, and (3) between sample times within a key. An alternative to this design is a 'fixed effects' model in which the objective is not to measure sources of variation per se but to estimate differences between specific groups or treatments, which are regarded as 'fixed' or discrete effects. This statnote describes two scenarios utilizing this type of analysis: (1) measuring the degree of bacterial contamination on 2p coins collected from three types of business property, viz., a butcher’s shop, a sandwich shop, and a newsagent and (2) the effectiveness of drugs in the treatment of a fungal eye infection.