3 resultados para ANHYDRIDES
em Aston University Research Archive
Resumo:
Mucohalogen acids have been used for the preparation of a variety of 3,4-clihalogenated 2(5H)-furanones. In one synthetic step the carbarnates 2a-c and the pseudoanhydrides 4a-e were prepared using isocyanates and acid anhydrides. A series of 5-alkoxylated 3,4-dichloro-2(5H)-furanones 5a-o have been synthesized with a wide range of lipophilicity, using the hydroxy-form of mucohalogen acids 1a and 1b. The 5-allyl-3,4-dichloro-2(5H)-furanone 5f was derived into the dihydro-isoxazol 6 and the oxirane 7. The methyl ester 5a was converted with ammonia into the tetramic acid chloride 11. The pseudo acid chloride 3 was reacted further into the bis aziricline 8. Reduction of the mucochloric acid 1a furnished the trichlorofuranone 3. The cytotoxicity of these simple and bis-cyclic butenolides have been evaluated in tissue culture on MAC13 and MAC16 cancer cell lines using the MTT cytotoxicity assay. The ester 5g, the acetate 4b and the carbamate 2b displayed a cytotoxicity in the low micromolar range. Further, an IC50 (50% inhibitory concentration) of 50 nM and 30 nm was determined forthe epoxide 7 and the aziridine 18. © 2004 The Authors Recieved.
Resumo:
In the ionic liquids [Bmim][PF6] or [Bmim][BF4], a series of succinimide, maleimide and phthalimide derivatives were synthesized from corresponding anhydrides with a variety of primary amines in excellent yield.
Resumo:
Purpose: Surfactant proteins A, B, C and D complex with (phospho)lipids to produce surfactants which provide low interfacial tensions. It is likely that similar complexation occurs in the tear film and contributes to its low surface tension. Synthetic protein-phospholipid complexes, with styrene maleic anhydrides (SMAs) as the protein analogue, have been shown to have similarly low surface tensions. This study investigates the potential of modified SMAs and/or SMA-phospholipid complexes, which form under physiological conditions, to supplement natural tear film surfactants. Method: SMAs were modified to provide structural variants which can form complexes under varying conditions. Infrared spectroscopy and Nuclear Magnetic Resonance were used to confirm SMA structure. Interfacial behaviour of the SMA and SMA-phospholipid complexes was studied using Langmuir trough, du Nûoy ring and pulsating bubblemethods. Factors which affect SMA-phospholipid complex formation, such as temperature and pH, were also investigated. Results: Structural manipulation of SMAs allows control over complex formation, including under physiological conditions (e.g. partial SMAesterfication allowed complexation with dimyristoylphosphatidylcholine, at pH7). The low surface tensions of the SMAs (42mN/m for static (du Nûoy ring) and 34mN/m for dynamic (Langmuir) techniques) demonstrate their surface activity at the air-aqueous interface. SMA-phospholipid complexes provide even lower surface tensions (~2 mN/m), approaching that of lung surfactant, as measured by the pulsating bubblemethod. Conclusions: Design of the molecular architecture of SMAs allows control over their surfactant properties. These SMAs could be used as novel tear films supplements, either alone to complex with native tear film phospholipids or delivered as synthetic protein-phospholipid complexes.