1 resultado para ANALYTIC-FUNCTIONS
em Aston University Research Archive
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (3)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (11)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (28)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (1)
- Boston University Digital Common (5)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- CaltechTHESIS (13)
- Cambridge University Engineering Department Publications Database (81)
- CentAUR: Central Archive University of Reading - UK (106)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (66)
- Cochin University of Science & Technology (CUSAT), India (9)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (8)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Archives@Colby (1)
- Duke University (8)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (41)
- Indian Institute of Science - Bangalore - Índia (147)
- Instituto Politécnico do Porto, Portugal (6)
- Massachusetts Institute of Technology (4)
- Ministerio de Cultura, Spain (8)
- National Center for Biotechnology Information - NCBI (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (127)
- Queensland University of Technology - ePrints Archive (121)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (9)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (7)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (4)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universitat de Girona, Spain (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (9)
- Université de Lausanne, Switzerland (8)
- Université de Montréal, Canada (22)
- University of Michigan (5)
- University of Southampton, United Kingdom (11)
- WestminsterResearch - UK (3)
Resumo:
An analytic investigation of the average case learning and generalization properties of Radial Basis Function Networks (RBFs) is presented, utilising on-line gradient descent as the learning rule. The analytic method employed allows both the calculation of generalization error and the examination of the internal dynamics of the network. The generalization error and internal dynamics are then used to examine the role of the learning rate and the specialization of the hidden units, which gives insight into decreasing the time required for training. The realizable and over-realizable cases are studied in detail; the phase of learning in which the hidden units are unspecialized (symmetric phase) and the phase in which asymptotic convergence occurs are analyzed, and their typical properties found. Finally, simulations are performed which strongly confirm the analytic results.