7 resultados para AM Museums (General). Collectors and collecting (General)
em Aston University Research Archive
Resumo:
Auditory detection thresholds for certain frequencies of both amplitude modulated (AM) and frequency modulated (FM) dynamic auditory stimuli are associated with reading in typically developing and dyslexic readers. We present the first behavioral and molecular genetic characterization of these two auditory traits. Two extant extended family datasets were given reading tasks and psychoacoustic tasks to determine FM 2 Hz and AM 20 Hz sensitivity thresholds. Univariate heritabilities were significant for both AM (h2 = 0.20) and FM (h2 = 0.29). Bayesian posterior probability of linkage (PPL) analysis found loci for AM (12q, PPL = 81 %) and FM (10p, PPL = 32 %; 20q, PPL = 65 %). Bivariate heritability analyses revealed that FM is genetically correlated with reading, while AM was not. Bivariate PPL analysis indicates that FM loci (10p, 20q) are not also associated with reading.
Resumo:
The aim of this work has been to investigate the behaviour of a continuous rotating annular chromatograph (CRAC) under a combined biochemical reaction and separation duty. Two biochemical reactions have been employed, namely the inversion of sucrose to glucose and fructose in the presence of the enzyme invertase and the saccharification of liquefied starch to maltose and dextrin using the enzyme maltogenase. Simultaneous biochemical reaction and separation has been successfully carried out for the first time in a CRAC by inverting sucrose to fructose and glucose using the enzyme invertase and collecting continuously pure fractions of glucose and fructose from the base of the column. The CRAC was made of two concentric cylinders which form an annulus 140 cm long by 1.2 cm wide, giving an annular space of 14.5 dm3. The ion exchange resin used was an industrial grade calcium form Dowex 50W-X4 with a mean diameter of 150 microns. The mobile phase used was deionised and dearated water and contained the appropriate enzyme. The annular column was slowly rotated at speeds of up to 240°h-1 while the sucrose substrate was fed continuously through a stationary feed pipe to the top of the resin bed. A systematic investigation of the factors affecting the performance of the CRAC under simultaneous biochemical reaction and separation conditions was carried out by employing a factorial experimental procedure. The main factors affecting the performance of the system were found to be the feed rate, feed concentrations and eluent rate. Results from the experiments indicated that complete conversion could be achieved for feed concentrations of up to 50% w/v sucrose and at feed throughputs of up to 17.2 kg sucrose per m3 resin/h. The second enzymic reaction, namely the saccharification of liquefied starch to maltose employing the enzyme maltogenase has also been successfully carried out on a CRAC. Results from the experiments using soluble potato starch showed that conversions of up to 79% were obtained for a feed concentration of 15.5% w/v at a feed flowrate of 400 cm3/h. The product maltose obtained was over 95% pure. Mathematical modelling and computer simulation of the sucrose inversion system has been carried out. A finite difference method was used to solve the partial differential equations and the simulation results showed good agreement with the experimental results obtained.
Resumo:
Human adrenomedullin (AM) is a 52-amino acid peptide belonging to the calcitonin peptide family, which also includes calcitonin gene-related peptide (CGRP) and AM2. The two AM receptors, AM(1) and AM(2), are calcitonin receptor-like receptor (CL)/receptor activity-modifying protein (RAMP) (RAMP2 and RAMP3, respectively) heterodimers. CGRP receptors comprise CL/RAMP1. The only human AM receptor antagonist (AM(22-52)) is a truncated form of AM; it has low affinity and is only weakly selective for AM(1) over AM(2) receptors. To develop novel AM receptor antagonists, we explored the importance of different regions of AM in interactions with AM(1), AM(2), and CGRP receptors. AM(22-52) was the framework for generating further AM fragments (AM(26-52) and AM(30-52)), novel AM/alphaCGRP chimeras (C1-C5 and C9), and AM/AM(2) chimeras (C6-C8). cAMP assays were used to screen the antagonists at all receptors to determine their affinity and selectivity. Circular dichroism spectroscopy was used to investigate the secondary structures of AM and its related peptides. The data indicate that the structures of AM, AM2, and alphaCGRP differ from one another. Our chimeric approach enabled the identification of two nonselective high-affinity antagonists of AM(1), AM(2), and CGRP receptors (C2 and C6), one high-affinity antagonist of AM(2) receptors (C7), and a weak antagonist selective for the CGRP receptor (C5). By use of receptor mutagenesis, we also determined that the C-terminal nine amino acids of AM seem to be responsible for its interaction with Glu74 of RAMP3. We provide new information on the structure-activity relationship of AM, alphaCGRP, and AM2 and how AM interacts with CGRP and AM(2) receptors.
Resumo:
Customer-oriented boundary-spanning behaviours (COBSBs) are critical to the success of service organisations. Transformational leadership, with its emphasis on the social elements of the leader-subordinate dyad, is a likely antecedent to COBSBs. Similarly, the interpersonal nature of services suggests leader compassion could have a significant effect on the saliency of the relationship between transformational leadership and COBSBs. This paper reports on a study of the moderating effect of leader compassion on the relationship between transformational leadership and COBSBs (service delivery behaviours, internal influence and external representation). Transformational leadership and compassion both have significant and positive influences on COBSBs. However, compassion plays no moderating role. These findings are discussed and avenues for further research are proposed.
Resumo:
Luminance changes within a scene are ambiguous; they can indicate reflectance changes, shadows, or shading due to surface undulations. How does vision distinguish between these possibilities? When a surface painted with an albedo texture is shaded, the change in local mean luminance (LM) is accompanied by a similar modulation of the local luminance amplitude (AM) of the texture. This relationship does not necessarily hold for reflectance changes or for shading of a relief texture. Here we concentrate on the role of AM in shape-from-shading. Observers were presented with a noise texture onto which sinusoidal LM and AM signals were superimposed, and were asked to indicate which of two marked locations was closer to them. Shape-from-shading was enhanced when LM and AM co-varied (in-phase), and was disrupted when they were out-of-phase. The perceptual differences between cue types (in-phase vs out-of-phase) were enhanced when the two cues were present at different orientations within a single image. Similar results were found with a haptic matching task. We conclude that vision can use AM to disambiguate luminance changes. LM and AM have a positive relationship for rendered, undulating, albedo textures, and we assess the degree to which this relationship holds in natural images. [Supported by EPSRC grants to AJS and MAG].
Resumo:
The pattern of illumination on an undulating surface can be used to infer its 3-D form (shape from shading). But the recovery of shape would be invalid if the shading actually arose from reflectance variation. When a corrugated surface is painted with an albedo texture, the variation in local mean luminance (LM) due to shading is accompanied by a similar modulation in texture amplitude (AM). This is not so for reflectance variation, nor for roughly textured surfaces. We used a haptic matching technique to show that modulations of texture amplitude play a role in the interpretation of shape from shading. Observers were shown plaid stimuli comprising LM and AM combined in-phase (LM+AM) on one oblique and in anti-phase (LM-AM) on the other. Stimuli were presented via a modified ReachIN workstation allowing the co-registration of visual and haptic stimuli. In the first experiment, observers were asked to adjust the phase of a haptic surface, which had the same orientation as the LM+AM combination, until its peak in depth aligned with the visually perceived peak. The resulting alignments were consistent with the use of a lighting-from-above prior. In the second experiment, observers were asked to adjust the amplitude of the haptic surface to match that of the visually perceived surface. Observers chose relatively large amplitude settings when the haptic surface was oriented and phase-aligned with the LM+AM cue. When the haptic surface was aligned with the LM-AM cue, amplitude settings were close to zero. Thus the LM/AM phase relation is a significant visual depth cue, and is used to discriminate between shading and reflectance variations. [Supported by the Engineering and Physical Sciences Research Council, EPSRC].
Resumo:
An efficient means of evaluating potential biomaterials is to use the in vitro fibroblast cell culture model. However, the chemistry which influences cell adhesion on polymer substrates is poorly understood. The work in this thesis aims to rationalise several theories of current opinion and introduce new chemical techniques that may predict cellular behaviour. The keratoprosthesis is a typical example of the need to be able to manipulate cell adhesion of materials since both adhesive and non adhesive sections are needed for proper integration and optical function. Calcein AM/ethidium homodimer-1 and DAPI assays were carried out using 3T3 and EKl.BR cells. Poly(HEMA) was found to be the most cell adhesive hydrogel tested. The reactivity of monomers and the resulting sequence distribution were found to affect surface properties and this may explain the poor levels of cell adhesion seen on NVP/MMA copolymers. Surface free energy is shown to be dependent on the polar and non polar groups present along the backbone chain of the polymers. Dehydrated and hydrated contact angle measurements show the effect of rotation of surface groups around the backbone chain. This effect is most apparent on hydrogels containing methacrylic acid. Dynamic contact angle measurements confirm sequence distribution irregularities and demonstrate the mobility of surface groups. Incorporation of NVI or DEAEMA into the hydrogels does not affect the mobility of the surface groups despite their bulkiness. Foetal calf serum was used for the first time as a test solution in an attempt to mimic a biological environment during surface experiments. A Vroman effect may be present, and may involve different surface proteins for each material tested. This interdisciplinary study combines surface characterisation and biological testing to further the knowledge of the biomaterial/host interface. Surface chemistry techniques appear to be insufficiently sensitive to predict cellular behaviour. The degree of ionisation of hydrogels containing ionic groups depends on the nature of the functional groups as well as the concentration and this is an important parameter to consider when comparing charged materials.