4 resultados para ALPHA-GALACTOSIDASE GENE
em Aston University Research Archive
Resumo:
1. The responses of the electrically stimulated guinea-pig ileum and vas deferens to human and rat calcitonin gene-related peptide (CGRP) and amylin were investigated. 2. The inhibition of contraction of the ileum produced by human alpha CGRP was antagonized by human alpha CGRP8-37 (apparent pA2 estimated at 7.15 +/- 0.23) > human alpha CGRP19-37 (apparent pA2 estimated as 6.67 +/- 0.33) > [Tyr0]-human alpha CGRP28-37. The amylin antagonist, AC187, was three fold less potent than CGRP8-37 in antagonizing human alpha CGRP. 3. Both human beta- and rat alpha CGRP inhibited contractions of the ileum, but this was less sensitive to inhibition by CGRP8-37 than the effect of human alpha CGRP. However, CGRP19-37 was twenty times more effective in inhibiting the response to rat alpha CGRP (apparent pA2 estimated as 8.0 +/- 0.1) compared to human alpha CGRP. 4. Rat amylin inhibited contractions in about 10% of ileal preparations; this effect was not antagonized by any CGRP fragment. Human amylin had no action on this preparation. 5. Both human and rat alpha CGRP inhibited electrically stimulated contractions of the vas deferens, which were not antagonized by 3 microM CGRP8-37 or 10 microM AC187. 6. Rat amylin inhibited the stimulated contractions of the vas deferens (EC50 = 77 +/- 9 nM); human amylin was less potent (EC50 = 213 +/- 22 nM). The response to rat amylin was antagonized by 10 microM CGRP8-37 (EC50 = 242 +/- 25 nM) and 10 microM AC187 (EC50 = 610 +/- 22 nM). 7. It is concluded that human alpha CGRP relaxes the guinea-pig ileum via CGRP1-like receptors, but that human beta CGRP and rat alpha CGRP may use additional receptors. These are distinct CGRP2-like and amylin receptors on guinea-pig vas deferens.
Resumo:
1 The L6 myocyte cell line expresses high affinity receptors for calcitonin gene-related peptide (CGRP) which are coupled to activation of adenylyl cyclase. The biochemical pharmacology of these receptors has been examined by radioligand binding or adenosine 3':5'-cyclic monophosphate (cyclic AMP) accumulation. 2 In intact cells at 37 degrees C, human and rat alpha- and beta-CGRP all activated adenylyl cyclase with EC50s of about 1.5 nM. A number of CGRP analogues containing up to five amino acid substitutions showed similar potencies. In membrane binding studies at 22 degrees C in 1 mM Mg2+, the above all bound to a single site with IC50s of 0.1-0.4 nM. 3 The fragment CGRP(8-37) acted as a competitive antagonist of CGRP stimulation of adenylyl cyclase with a calculated Kd of 5 nM. The Kd determined in membrane binding assays was lower (0.5 nM). 4 The N-terminal extended human alpha-CGRP analogue Tyro-CGRP activated adenylyl cyclase and inhibited [125I]-iodohistidyl-CGRP binding less potently than human alpha-CGRP (EC50 for cyclase = 12 nM, IC50 for binding = 4 nM). 5 The pharmacological profile of the L6 CGRP receptor suggests that it most closely resembles sites on skeletal muscle, cardiac myocytes and hepatocytes. The L6 cell line should be a stable homogeneous model system in which to study CGRP mechanisms and pharmacology."
Resumo:
STUDY DESIGN: The twy/twy mouse undergoes spontaneous chronic mechanical compression of the spinal cord; this in vivo model system was used to examine the effects of retrograde adenovirus (adenoviral vector [AdV])-mediated brain-derived neurotrophic factor (BDNF) gene delivery to spinal neural cells. OBJECTIVE: To investigate the targeting and potential neuroprotective effect of retrograde AdV-mediated BDNF gene transfection in the chronically compressed spinal cord in terms of prevention of apoptosis of neurons and oligodendrocytes. SUMMARY OF BACKGROUND DATA: Several studies have investigated the neuroprotective effects of neurotrophins, including BDNF, in spinal cord injury. However, no report has described the effects of retrograde neurotrophic factor gene delivery in compressed spinal cords, including gene targeting and the potential to prevent neural cell apoptosis. METHODS: AdV-BDNF or AdV-LacZ (as a control gene) was injected into the bilateral sternomastoid muscles of 18-week old twy/twy mice for retrograde gene delivery via the spinal accessory motor neurons. Heterozygous Institute of Cancer Research mice (+/twy), which do not undergo spontaneous spinal compression, were used as a control for the effects of such compression on gene delivery. The localization and cell specificity of ß-galactosidase expression (produced by LacZ gene transfection) and BDNF expression in the spinal cord were examined by coimmunofluorescence staining for neural cell markers (NeuN, neurons; reactive immunology protein, oligodendrocytes; glial fibrillary acidic protein, astrocytes; OX-42, microglia) 4 weeks after gene injection. The possible neuroprotection afforded by retrograde AdV-BDNF gene delivery versus AdV-LacZ-transfected control mice was assessed by scoring the prevalence of apoptotic cells (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells) and immunoreactivity to active caspases -3, -8, and -9, p75, neurofilament 200 kD (NF), and for the oligodendroglial progenitor marker, NG2. RESULTS.: Four weeks after injection, the retrograde delivery of the LacZ marker gene was identified in cervical spinal neurons and some glial cells, including oligodendrocytes in the white matter of the spinal cord, in both the twy/twy mouse and the heterozygous Institute of Cancer Research mouse (+/twy). In the compressed spinal cord of twy/twy mouse, AdV-BDNF gene transfection resulted in a significant decrease in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells present in the spinal cord and a downregulation in the caspase apoptotic pathway compared with AdV-LacZ (control) gene transfection. There was a marked and significant increase in the areas of the spinal cord of AdV-BDNF-injected mice that were NF- and NG2-immunopositive compared with AdV-LacZ-injected mice, indicating the increased presence of neurons and oligodendrocytes in response to BDNF transfection. CONCLUSION: Our results demonstrate that targeted retrograde BDNF gene delivery suppresses apoptosis in neurons and oligodendrocytes in the chronically compressed spinal cord of twy/twy mouse. Further work is required to establish whether this method of gene delivery may provide neuroprotective effects in other situations of compressive spinal cord injury.
Resumo:
Genome-wide association studies in bipolar disorder (BD)1 have implicated a single-nucleotide polymorphism (rs1006737, G right arrow A) in the CACNA1C gene, which encodes for the alpha 1c (CAV1.2) subunit of the voltage-gated, L-type calcium channel. Neuroimaging studies of healthy individuals report that this risk allele modulates brain function within limbic (amygdala, anterior cingulate gyrus) and hippocampal regions during tasks of reward processing2, 3 and episodic memory. Moreover, animal studies suggest that the CaV1.2 L-type calcium channels influence emotional behaviour through enhanced neurotransmission via the lateral amygdala pathway. On the basis of this evidence, we tested the hypotheses that the CACNA1C rs1006737 risk allele will modulate neural responses within predefined prefrontal and subcortical regions of interest during emotional face processing and that this effect would be amplified in BD patients.