4 resultados para ALLOYING ELEMENTS

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The.use of high-chromium cast irons for abrasive wear resistance is restricted due to their poor fracture toughness properties. An.attempt was made to improve the fracture characteristics by altering the distribution, size and.shape of the eutectic carbide phase without sacrificing their excellent wear resistance. This was achieved by additions of molybdenum or tungsten followed by high temperature heat treatments. The absence of these alloying elements or replacement of them with vanadium or manganese did not show any significant effect and the continuous eutectic carbide morphology remained the same after application of high temperature heat treatments. The fracture characteristics of the alloys with these metallurgical variables were evaluated for both sharp-cracks and blunt notches. The results were used in conjunction with metallographic and fractographic observations to establish possible failure mechanisms. The fracture mechanism of the austenitic alloys was found to be controlled not only by the volume percent but was also greatly influenced by the size and distribution of the eutectic carbides. On the other hand, the fracture mechanism of martensitic alloys was independent of the eutectic carbide morphology. The uniformity of the secondary carbide precipitation during hardening heat treatments was shown to be a reason for consistant fracture toughness results being obtained with this series of alloys although their eutectic carbide morphologies were different. The collected data were applied to a model which incorporated the microstructural parameters and correlated them with the experimentally obtained valid stress intensity factors. The stress intensity coefficients of different short-bar fracture toughness test specimens were evaluated from analytical and experimental compliance studies. The.validity and applicability of this non-standard testing technique for determination of the fracture toughness of high-chromium cast irons were investigated. The results obtained correlated well with the valid results obtained from standard fracture toughness tests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A thermodynamic analysis which is capable of estimating the austenite/ferrite equilibria in duplex stainless steels has been carried out using the sublattice thermodynamic model. The partitioning of alloying elements between the austenite and ferrite phases has been calculated as a function of temperature. The results showed that chromium partitioning was not influenced significantly by the temperature. The molybdenum, on the other hand, was found to partition preferentially into ferrite phase as the temperature decreases. A strong partitioning of nickel into the austenite was observed to decrease gradually with increasing temperature. Among the alloying elements, average nitrogen concentration was found to have the most profound effect on the phase balance and the partitioning of nitrogen into the austenite. The partitioning coefficient of nitrogen (the ratio of the mole fraction of nitrogen in the austenite to that in the ferrite) was found to be as high as 7.0 around 1300 K. Consequently, the volume fraction of austenite was influenced by relatively small additions of nitrogen. The results are compared with the experimentally observed data in a duplex stainless steel weld metal in conjunction with the solid state δ → δ + γ phase transformation. Particular attention was given to the morphological instability of grain boundary austenite allotriomorphs. A compariso between the experimental results and calculations indicated that the instability associated with irregular austenite perturbations results from the high degree of undercooling. The results suggest that the model can be used successfully to understand the development of the microstructure in duplex stainless steel weld metals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanism of intragranular nucleation of austenite in a duplex stainless steel (Fe-23.1 Cr-6.1 Ni-3.1 Mo-O.165 N-0.017 C, wt.%) weld metal and heat-affected zone (HAZ) has been examined. In the weld metal the acicular austenite is found to nucleate intragranularly on inclusions and subsequent plates form sympathetically resulting in a fine interlocked microstructure. Austenite plates adopt the Kurdjumov-Sachs orientation relationship with the ferrite matrix and grow with diffusion-controlled mechanism as evident from partitioning of substitutional alloying elements. At least one set of fine intrinsic dislocations on the austenite/ferrite interphase interfaces is observed suggesting that the boundaries are semi-coherent. The high cooling rates involved in the HAZ result in a supersaturated ferrite matrix where precipitation of intragranular austenite occurs as a result of reheating associated with subsequent passes. Austenite particles in the HAZ nucleate preferentially away from gain boundary austenite allotriomorphs indicating that intragranular precipitation is favoured by the supersaturated matrix.