4 resultados para AHP method
em Aston University Research Archive
Resumo:
Successful supply chain management requires the management of a complex, multi-stakeholder, multi-criteria system. Stakeholder inclusion in the supply chain design and decision making processes is an area of growing interest for companies looking to design sustainable supply chains or produce sustainable products. This paper demonstrates the use of the integrated quality function deployment and analytic hierarchy process (QFD-AHP) method for the inclusion of a wide group of stakeholder requirements into the supplier selection process. The method provides a weighted ranked list of evaluating criteria which can be used to assess potential suppliers in the UK renewable bioenergy industry. The bioenergy industry is suitable as there are many stakeholders placing various requirements upon potential biomass suppliers. The paper uses a mixture of literature review and semi-structured industry interviews to answer three research questions: which stakeholder groups are important when selecting biomass suppliers for the UK? What requirements are made by these stakeholders on the supply of biomass fuels and feedstocks? Which evaluating criteria are most important? © 2013 Elsevier B.V.
Resumo:
The deployment of bioenergy technologies is a key part of UK and European renewable energy policy. A key barrier to the deployment of bioenergy technologies is the management of biomass supply chains including the evaluation of suppliers and the contracting of biomass. In the undeveloped biomass for energy market buyers of biomass are faced with three major challenges during the development of new bioenergy projects. What characteristics will a certain supply of biomass have, how to evaluate biomass suppliers and which suppliers to contract with in order to provide a portfolio of suppliers that best satisfies the needs of the project and its stakeholder group whilst also satisfying crisp and non-crisp technological constraints. The problem description is taken from the situation faced by the industrial partner in this research, Express Energy Ltd. This research tackles these three areas separately then combines them to form a decision framework to assist biomass buyers with the strategic sourcing of biomass. The BioSS framework. The BioSS framework consists of three modes which mirror the development stages of bioenergy projects. BioSS.2 mode for early stage development, BioSS.3 mode for financial close stage and BioSS.Op for the operational phase of the project. BioSS is formed of a fuels library, a supplier evaluation module and an order allocation module, a Monte-Carlo analysis module is also included to evaluate the accuracy of the recommended portfolios. In each mode BioSS can recommend which suppliers should be contracted with and how much material should be purchased from each. The recommended blend should have chemical characteristics within the technological constraints of the conversion technology and also best satisfy the stakeholder group. The fuels library is made up from a wide variety of sources and contains around 100 unique descriptions of potential biomass sources that a developer may encounter. The library takes a wide data collection approach and has the aim of allowing for estimates to be made of biomass characteristics without expensive and time consuming testing. The supplier evaluation part of BioSS uses a QFD-AHP method to give importance weightings to 27 different evaluating criteria. The evaluating criteria have been compiled from interviews with stakeholders and policy and position documents and the weightings have been assigned using a mixture of workshops and expert interview. The weighted importance scores allow potential suppliers to better tailor their business offering and provides a robust framework for decision makers to better understand the requirements of the bioenergy project stakeholder groups. The order allocation part of BioSS uses a chance-constrained programming approach to assign orders of material between potential suppliers based on the chemical characteristics of those suppliers and the preference score of those suppliers. The optimisation program finds the portfolio of orders to allocate to suppliers to give the highest performance portfolio in the eyes of the stakeholder group whilst also complying with technological constraints. The technological constraints can be breached if the decision maker requires by setting the constraint as a chance-constraint. This allows a wider range of biomass sources to be procured and allows a greater overall performance to be realised than considering crisp constraints or using deterministic programming approaches. BioSS is demonstrated against two scenarios faced by UK bioenergy developers. The first is a large scale combustion power project, the second a small scale gasification project. The Bioss is applied in each mode for both scenarios and is shown to adapt the solution to the stakeholder group importance and the different constraints of the different conversion technologies whilst finding a globally optimal portfolio for stakeholder satisfaction.
Resumo:
Purpose – The purpose of this research is to develop a holistic approach to maximize the customer service level while minimizing the logistics cost by using an integrated multiple criteria decision making (MCDM) method for the contemporary transshipment problem. Unlike the prevalent optimization techniques, this paper proposes an integrated approach which considers both quantitative and qualitative factors in order to maximize the benefits of service deliverers and customers under uncertain environments. Design/methodology/approach – This paper proposes a fuzzy-based integer linear programming model, based on the existing literature and validated with an example case. The model integrates the developed fuzzy modification of the analytic hierarchy process (FAHP), and solves the multi-criteria transshipment problem. Findings – This paper provides several novel insights about how to transform a company from a cost-based model to a service-dominated model by using an integrated MCDM method. It suggests that the contemporary customer-driven supply chain remains and increases its competitiveness from two aspects: optimizing the cost and providing the best service simultaneously. Research limitations/implications – This research used one illustrative industry case to exemplify the developed method. Considering the generalization of the research findings and the complexity of the transshipment service network, more cases across multiple industries are necessary to further enhance the validity of the research output. Practical implications – The paper includes implications for the evaluation and selection of transshipment service suppliers, the construction of optimal transshipment network as well as managing the network. Originality/value – The major advantages of this generic approach are that both quantitative and qualitative factors under fuzzy environment are considered simultaneously and also the viewpoints of service deliverers and customers are focused. Therefore, it is believed that it is useful and applicable for the transshipment service network design.
Resumo:
The enormous potential of cloud computing for improved and cost-effective service has generated unprecedented interest in its adoption. However, a potential cloud user faces numerous risks regarding service requirements, cost implications of failure and uncertainty about cloud providers' ability to meet service level agreements. These risks hinder the adoption of cloud. We extend the work on goal-oriented requirements engineering (GORE) and obstacles for informing the adoption process. We argue that obstacles prioritisation and their resolution is core to mitigating risks in the adoption process. We propose a novel systematic method for prioritising obstacles and their resolution tactics using Analytical Hierarchy Process (AHP). We provide an example to demonstrate the applicability and effectiveness of the approach. To assess the AHP choice of the resolution tactics we support the method by stability and sensitivity analysis. Copyright 2014 ACM.