68 resultados para ADD-DROP FILTERS
em Aston University Research Archive
Resumo:
We demonstrate cascaded 100-Gb/s sub-channel add/drop from a 1-Tb/s multi-band OFDM super-channel having 2-GHz inter-sub-channel guard-bands within a recirculating loop via a hierarchical ROADM using high-resolution filters, showcasing 1000-km transmission reach and five ROADM node passages for the add/drop sub-channel when hybrid Raman-EDFA is implemented.
Resumo:
We propose a novel architecture for all-optical add-drop multiplexing of OFDM signals. Extensive numerical simulations have been carried out to benchmark the performance of the architecture against critical design parameters.
Resumo:
We discuss the recently proposed architecture for an all-optical add-drop multiplexer of OFDM signals and we summarize the results of its theoretical design and experimental implementation. © 2015 OSA.
Resumo:
We summarize our research work on the design and development of an add-drop multiplexer for spectrally overlapping OFDM signals. The standard node functions of sub-channel drop, extraction and insertion were obtained whilst the signals remained fully in the optical domain. Numerical simulations have been carried out to identify the main sources of degradation and to benchmark the architectural performance against critical design parameters, whereas the experimental demonstration of the scheme has been achieved for both single quadrature and dual quadrature signals. The reported scheme enables a fully flexible node compatible with future terabit per second super-channel transmission.
Numerical investigation of all-optical add-drop multiplexing for spectrally overlapping OFDM signals
Resumo:
We propose a novel architecture for all-optical add-drop multiplexing of OFDM signals. Sub-channel extraction is achieved by means of waveform replication and coherent subtraction from the OFDM super-channel. Numerical simulations have been carried out to benchmark the performance of the architecture against critical design parameters.
Resumo:
This thesis presents details on both theoretical and experimental aspects of UV written fibre gratings. The main body of the thesis deals with the design, fabrication and testing of telecommunication optical fibre grating devices, but also an accurate theoretical analysis of intra-core fibre gratings is presented. Since more than a decade, fibre gratings have been extensively used in the telecommunication field (as filters, dispersion compensators, and add/drop multiplexers for instance). Gratings for telecommunication should conform to very high fabrication standards as the presence of any imperfection raises the noise level in the transmission system compromising its ability of transmitting intelligible sequence of bits to the receiver. Strong side lobes suppression and high and sharp reflection profile are then necessary characteristics. A fundamental part of the theoretical and experimental work reported in this thesis is about apodisation. The physical principle of apodisation is introduced and a number of apodisation techniques, experimental results and numerical optimisation of the shading functions and all the practical parameters involved in the fabrication are detailed. The measurement of chromatic dispersion in fibres and FBGs is detailed and an estimation of its accuracy is given. An overview on the possible methods that can be implemented for the fabrication of tunable fibre gratings is given before detailing a new dispersion compensator device based on the action of a distributed strain onto a linearly chirped FBG. It is shown that tuning of second and third order dispersion of the grating can be obtained by the use of a specially designed multipoint bending rig. Experiments on the recompression of optical pulses travelling long distances are detailed for 10 Gb/s and 40 Gb/s. The characterisation of a new kind of double section LPG fabricated on a metal-clad coated fibre is reported. The fabrication of the device is made easier by directly writing the grating through the metal coating. This device may be used to overcome the recoating problems associated with standard LPGs written in step-index fibre. Also, it can be used as a sensor for simultaneous measurements of temperature and surrounding medium refractive index.
Resumo:
The fabrication of sub-micron periodic structures beyond diffraction limit is a major motivation for the present paper. We describe the fabrication of the periodic structure of 25 mm long with a pitch size of 260 nm which is less than a third of the wavelength used. This is the smallest reported period of the periodic structure inscribed by direct point-by-point method. A prototype of the add-drop filter, which utilizes such gratings, was demonstrated in one stage fabrication process of femtosecond inscription, in the bulk fused silica.
Resumo:
The fabrication of sub-micron periodic structures beyond diffraction limit is a major motivation for the present paper. We describe the fabrication of the periodic structure of 25 mm long with a pitch size of 260 nm which is less than a third of the wavelength used. This is the smallest reported period of the periodic structure inscribed by direct point-by-point method. A prototype of the add-drop filter, which utilizes such gratings, was demonstrated in one stage fabrication process of femtosecond inscription, in the bulk fused silica.
Resumo:
We report the impact of cascaded reconfigurable optical add-drop multiplexer induced penalties on coherently-detected 28 Gbaud polarization multiplexed m-ary quadrature amplitude modulation (PM m-ary QAM) WDM channels. We investigate the interplay between different higher-order modulation channels and the effect of filter shapes and bandwidth of (de)multiplexers on the transmission performance, in a segment of pan-European optical network with a maximum optical path of 4,560 km (80km x 57 spans). We verify that if the link capacities are assigned assuming that digital back propagation is available, 25% of the network connections fail using electronic dispersion compensation alone. However, majority of such links can indeed be restored by employing single-channel digital back-propagation employing less than 15 steps for the whole link, facilitating practical application of DBP. We report that higher-order channels are most sensitive to nonlinear fiber impairments and filtering effects, however these formats are less prone to ROADM induced penalties due to the reduced maximum number of hops. Furthermore, it has been demonstrated that a minimum filter Gaussian order of 3 and bandwidth of 35 GHz enable negligible excess penalty for any modulation order.
Resumo:
In this work, we analyzed by means of numerical and laboratory experiments the resilience of 40 Gb/s amplitude shift keying modulation formats to transmission impairments in standard single-mode fiber lines as well as to optical filtering introduced by the optical add/drop multiplexer cascade. Our study is a pre-requisite to assess the implementation of cost-effective 40 Gb/s modulation technology in next generation high bit-rate robust optical transport networks.
Resumo:
Flexible optical networking is identified today as the solution that offers smooth system upgradability towards Tb/s capacities and optimized use of network resources. However, in order to fully exploit the potentials of flexible spectrum allocation and networking, the development of a flexible switching node is required capable to adaptively add, drop and switch tributaries with variable bandwidth characteristics from/to ultra-high capacity wavelength channels at the lowest switching granularity. This paper presents the main concept and technology solutions envisioned by the EU funded project FOX-C, which targets the design, development and evaluation of the first functional system prototype of flexible add-drop and switching cross-connects. The key developments enable ultra-fine switching granularity at the optical subcarrier level, providing end-to-end routing of any tributary channel with flexible bandwidth down to 10Gb/s (or even lower) carried over wavelength superchannels, each with an aggregated capacity beyond 1Tb/s. © 2014 IEEE.
Resumo:
All-optical signal processing is a powerful tool for the processing of communication signals and optical network applications have been routinely considered since the inception of optical communication. There are many successful optical devices deployed in today’s communication networks, including optical amplification, dispersion compensation, optical cross connects and reconfigurable add drop multiplexers. However, despite record breaking performance, all-optical signal processing devices have struggled to find a viable market niche. This has been mainly due to competition from electro-optic alternatives, either from detailed performance analysis or more usually due to the limited market opportunity for a mid-link device. For example a wavelength converter would compete with a reconfigured transponder which has an additional market as an actual transponder enabling significantly more economical development. Never-the-less, the potential performance of all-optical devices is enticing. Motivated by their prospects of eventual deployment, in this chapter we analyse the performance and energy consumption of digital coherent transponders, linear coherent repeaters and modulator based pulse shaping/frequency conversion, setting a benchmark for the proposed all-optical implementations.
Resumo:
In this work, we analyzed by means of numerical and laboratory experiments the resilience of 40 Gb/s amplitude shift keying modulation formats to transmission impairments in standard single-mode fiber lines as well as to optical filtering introduced by the optical add/drop multiplexer cascade. Our study is a pre-requisite to assess the implementation of cost-effective 40 Gb/s modulation technology in next generation high bit-rate robust optical transport networks. © 2006 Optical Society of America.
Resumo:
We present the first experimental implementation of an all-optical ROADM scheme for routing of individual channels within an all-optical OFDM superchannel. The interferometric technique demonstrated enables a fully flexible node, implementing the extraction, drop and addition of individual sub-channel.
Resumo:
We present the experimental implementation of an all-optical ROADM scheme for routing of an individual subchannel within an all-optical OFDM superchannel. The different functions required of optical node were demonstrated using interferometric technique with the extraction, drop, and addition of individual subchannel in a ten subchannels optically aggregated signal. The scheme we reported enables a fully flexible node compatible with future terabit per second superchannel transmission.