14 resultados para ACTIVATION-ENERGIES

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A strategy to enhance the thermal stability of C/SiO2 hybrids for the O2-based oxidative dehydrogenation of ethylbenzene to styrene (ST) by P addition is proposed. The preparation consists of the polymerization of furfuryl alcohol (FA) on a mesoporous precipitated SiO2. The polymerization is catalyzed by oxalic acid (OA) at 160 °C (FA:OA = 250). Phosphorous was added as H3PO4 after the polymerization and before the pyrolysis that was carried out at 700 °C and will extend the overall activation procedure. Estimation of the apparent activation energies reveals that P enhances the thermal stability under air oxidation, which is a good indication for the ODH tests. Catalytic tests show that the P/C/SiO2 hybrids are readily active, selective and indeed stable in the applied reactions conditions for 60 h time on stream. Coke build-up during the reaction attributed to the P-based acidity is substantial, leading to a reduction of the surface area and pore volume. The comparison with a conventional MWCNT evidences that the P/C/SiO2 hybrids are more active and selective at high temperatures (450–475 °C) while the difference becomes negligible at lower temperature. However, the comparison with reference P/SiO2 counterparts shows a very similar yield than the hybrids but more selective to ST. The benefit of the P/C/SiO2 hybrid is the lack of stabilization period, which is observed for the P/SiO2 to create an active coke overlayer. For long term operation, P/SiO2 appears to be a better choice in terms of selectivity, which is crucial for commercialization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have measured the frequency dependence of the conductivity and the dielectric constant of various samples of porous Si in the regime 1 Hz-100 kHz at different temperatures. The conductivity data exhibit a strong frequency dependence. When normalized to the dc conductivity, our data obey a universal scaling law, with a well-defined crossover, in which the real part of the conductivity sigma' changes from an sqrt(omega) dependence to being proportional to omega. We explain this in terms of activated hopping in a fractal network. The low-frequency regime is governed by the fractal properties of porous Si, whereas the high-frequency dispersion comes from a broad distribution of activation energies. Calculations using the effective-medium approximation for activated hopping on a percolating lattice give fair agreement with the data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conformational characteristics of poly(dimethylsilmethylene), poly(dimethylsilethene), poly(dimethylsilethane) and a related material, poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane), have been investigated using the method of molecular mechanics. In this method, a quantitative analysis of the factors affecting the nature and magnitude of the bond rotation potentials governing their conformational behaviour has been undertaken. Along with their structural data, the results obtained were employed to calculate a variety of conformationally-dependent properties for these polymers, including the characteristic ratio, the dipole moment ratio and the mean-square radius of gyration. In addition, the dielectric relaxation behaviour of two samples of poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane) with molar masses Mw = 28000 and Mw = 46000 respectively, have been studied as a function of temperature (179K-205K) and frequency (100-105Hz). Activation energies for the α-relaxation process and Davidson-Cole empirical distribution factors have been calculated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed study has been made of the feasibility of adsorptive purification of slack waxes from traces of aromatic compounds using type 13X molecular sieves to achieve 0.01% aromatics in the product. The limited literature relating to the adsorption of high molecular weight aromatic compounds by zeolites was reviewed. Equilibrium isotherms were determined for typical individual aromatic compounds. Lower molecular weight, or more compact, molecules were preferentially adsorbed and the number of molecules captured by one unit cell decreased with increasing molecular weight of the adsorbate. An increase in adsorption temperature resulted in a decrease in the adsorption value. The isosteric heat of adsorption of differnt types of aromatic compounds was determined from pairs of isotherms at 303 K to 343 K at specific coverages. The lowest heats of adsorption were for dodecylbenzene and phenanthrene. Kinetics of adsorption were studied for different aromatic compounds. The diffusivity decreased significantly when a long alkyl chain was attached to the benzene ring e.g. in dodecylbenzene; molecules with small cross-sectional diameter e.g. cumene were adsorbed most rapidly. The sorption rate increased with temperature. Apparent activation energies increased with increasing polarity. In a study of the dynamic adsorption of selected aromatic compounds from binary solutions in isooctane or n-alkanes, naphthalene exhibited the best dynamic properties followed by dibenzothiophene and finally dodecylbenzene. The dynamic adsorption of naphthalene from different n-alkane solvents increased with a decrease in solvent molecular weight. A tentative mathematical approach is proposed for the prediction of dynamic breakthrough curves from equilibrium isotherms and kinetic data. The dynamic properties of liquid phase adsorption of aromatics from slack waxes were studied at different temperatures and concentrations. The optimum operating temperature was 543 K. The best dynamic performance was achieved with feeds of low aromatic content. The studies with individual aromatic compounds demonstrated the affinity of type NaX molecular sieves to adsorb aromatics in the concentration range 3% - 5% . Wax purification by adsorption was considered promising and extension of the experimental programme was recommended.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The creep behaviour of three pressure diecast commercial zinc-aluminium based alloys: Mazak 3, corresponding to BS 1004A, and the new alloys ZA.8 and ZA.27 with a series of alloys with compositions ranging from 0% to 30% aluminium was investigated. The total creep elongation of commercial alloys was shown to be well correlated using an empirical equation. Based on this a parametrical relationship was derived which allowed the total creep extension to be related to the applied stress, the temperature and the time of test, so that a quantitative assessment of creep of the alloys could be made under different conditions. Deviation from the normal creep kinetics occurred in alloys ZA.8 and ZA.27 at very low stresses, 150°C, due to structural coarsening combined with partial transformation of ε -phase into T' phase. The extent of primary creep was found to increase with aluminium content, but secondary creep rates decreased in the order Mazak 3, ZA.8 and ZA.27. Thus, based on the above equation, ZA.8 was found to have a substantially better total creep resistance than ZA.27, which in turn was marginally better than Mazak 3 for strains higher than 0.5%, but inferior for smaller strains, due to its higher primary creep extension. The superior creep resistance of ZA.8 was found to be due to the presence of strictly-orientated, thin plate-like precipitates of ε(CuZn4) phase in the zinc matrix of the eutectic and the lamellarly decomposed β phase, in which the precipitation morphology and orientation of ε in the zinc matrix was determined. Over broad ranges of temperature and stresses, the stress exponents and activation energies for creep were found to be consistent with some proposed creep rate mechanisms; i.e. viscous glide for Mazak 3, dislocation climb over second phase particles for ZA.8 and dislocation climb for ZA.27, controlled by diffusion in the zinc-rich phase. The morphology of aluminium and copper-rich precipitates formed from the solid solution of zinc was clearly revealed. The former were found to further increase the creep rate of inherently low creep resistant zinc, but the latter contributed significantly to the creep resistance. Excess copper in the composition, however, was not beneficial in improving the creep resistance. Decomposition of β in copper-containing alloys was found to be through a metastable Zn-Al phase which is strongly stabilised by copper, and the final products of the decomposition had a profound effect on the creep strength of the alloys. The poor creep resistance of alloy ZA.27 was due to the presence of particulate products derived from decomposed β-phase and a large volume of fine, equiaxed products of continuously decomposed α-dendrites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new family of commercial zinc alloys designated as ZA8, ZA12, and ZA27 and high damping capacity alloys including Cosmal and Supercosmal and aluminium alloy LM25 were investigated for compressive creep and load relaxation behaviour under a series of temperatures and stresses. A compressive creep machine was designed to test the sand cast hollow cylindrical test specimens of these alloys. For each compressive creep experiment the variation of creep strain was presented in the form of graphs plotted as percentage of creep strain () versus time in seconds (s). In all cases, the curves showed the same general form of the creep curve, i.e. a primary creep stage, followed by a linear steady-state region (secondary creep). In general, it was observed that alloy ZA8 had the least primary creep among the commercial zinc-based alloys and ZA27 the greatest. The extent of primary creep increased with aluminium content to that of ZA27 then declined to Supercosmal. The overall creep strength of ZA27 was generally less than ZA8 and ZA12 but it showed better creep strength than ZA8 and ZA12 at high temperature and high stress. In high damping capacity alloys, Supercosmal had less primary creep and longer secondary creep regions and also had the lowest minimum creep rate among all the tested alloys. LM25 exhibited almost no creep at maximum temperature and stress used in this research work. Total creep elongation was shown to be well correlated using an empirical equation. Stress exponent and activation energies were calculated and found to be consistent with the creep mechanism of dislocation climb. The primary α and β phases in the as-cast structures decomposed to lamellar phases on cooling, with some particulates at dendrite edges and grain boundaries. Further breakdown into particulate bodies occurred during creep testing, and zinc bands developed at the highest test temperature of 160°C. The results of load relaxation testing showed that initially load loss proceeded rapidly and then deminished gradually with time. Load loss increased with temperature and almost all the curves approximated to a logarithmic decay of preload with time. ZA alloys exhibited almost the same load loss at lower temperature, but at 120°C ZA27 improved its relative performance with the passage of time. High damping capacity alloys and LM25 had much better resistance to load loss than ZA alloys and LM25 was found to be the best against load loss among these alloys. A preliminary equation was derived to correlate the retained load with time and temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The compressive creep behaviour of six sand cast zinc-rich alloys: No3 and No5, corresponding to BS 1004A and BS 1004B, respectively, alloy No2, ILZRO,.16 and two newer alloys ACuZinc5 and ACuZinc10 was investigated. The total creep contraction of the alloys was found to be well correlated using an empirical equation. On the basis of this equation, a parametrical relationship was derived which allowed the total creep contraction to be related to the applied stress, the temperature and the time of test, so that a quantitative assessment of compressive creep of the alloys could be made under different testing conditions. The primary creep and secondary creep rates were found for the alloys at different temperatures and stresses. Generally, the primary creep contraction was found to increase with copper content, whereas secondary creep rates decreased in the order No3, ACuZinc10, ACuZinc5 and No2. ILZRO.16 was tested only at the highest stress and two higher temperatures. The results showed that ILZRO.16 had higher creep resistance than all the other alloys. Thus, based on the above empirical equation, alloy No2 was found to have a substantially better total creep resistance than alloys No3 and No5, and slightly better than ACuZinc5 and ACuZinc10 for strains up to 1%. Both ACuZinc alloys had higher creep strength than commercial alloys No3 and No5. Alloy No5 had much higher creep resistance than alloy No3 under all conditions. The superior creep resistance of alloy No2 was considered to be due to the presence of small precipitates of -phase in the zinc matrix and a regular eutectic morphology. The stress exponents and activation energies for creep under different testing conditions were found to be consistent with some established creep-controlling mechanisms; i.e. dislocation climb for alloy No3, dislocation climb over second phase particles for alloys No5, No2, ACuZinc10, controlled by lattice diffusion in the zinc-rich phase. The lower creep resistance of alloy No3 was mainly due to the lower creep strength of copper-free primary particles having greater volume than eutectic in the microstructure. Alloys No5, ACuZinc5 and ACuZinc10 showed much better creep resistance than alloy No3, based on the precipitation-hardening due to the presence of small -phase precipitates. The primary dendrites in both ACuZinc alloys however were not of much benefit in improving the creep resistance of the alloys.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work described in this thesis is an attempt to elucidate the relationships between the pore system and a number of engineering properties of hardened cement paste, particularly tensile strength and resistances to carbonation and ionic penetration. By examining aspects such as the rate of carbonisation, the pore size distribution, the concentration of ions in the pore solution and the phase composition of cement pastes, relationships between the pore system (pores and pore solution) and the resistance to carbonation were investigated. The study was carried out in two parts. First, cement pastes with different pore systems were compared, whilst secondly comparisons were made between the pore systems of cement pastes with different degrees of carbonation. Relationships between the pore structure and ionic penetration were studied by comparing kinetic data relating to the diffusion of various ions in cement pastes with different pore systems. Diffusion coefficients and activation energies for the diffusion process of Cl- and Na+ ions in carbonated and non-carbonated cement pastes were determined by a quasi-steady state technique. The effect of the geometry of pores on ionic diffusion was studied by comparing the mechanisms of ionic diffusion for ions with different radii. In order to investigate the possible relationship between tensile strength and macroporosity, cement paste specimens with cross sectional areas less than 1mm2 were produced so that the chance of a macropore existing within them was low. The tensile strengths of such specimens were then compared with those of larger specimens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dielectric relaxation behaviour of a series of cyclic and linear poly(dimethylsiloxanes) with overline nn in the range 28 to 99 has been studied, as a function of temperature (142.0K-157.5K) and frequency (12-105Hz). Activation energies for the -relaxation process, Davidson-Cole empirical distribution factors, , and mean-square dipole moments per repeat unit, < 2> , have been calculated. Differences in values of H_act reflected restricted dipolar rotation for the cyclic structures, compared to the linear structures, over the range of molecular weights studied. The dielectric relaxation behaviour of a series of linear oligomers of methyl phenyl siloxane, with n in the range 4 to 10, a series of linear fractions of poly(methyl phenyl siloxane), with overline n_n in the range 31 to 1370, and a cyclic oligomer of mehyl phenyl siloxane, with n = 10, has been studied as a function of temperature (155.5K-264.0K) and frequency (12-105Hz). Activation energies for the -relaxation process, Davidson-Cole and Cole-Cole empirical distribution factors, and , respectively, and mean-square dipole moments per repeat unit have been calculated. The reduced flexibility of short methyl phenyl siloxane chains, compared to dimethyl siloxane chains, was apparent from a comparison of dipole moment ratios. The dilectric relaxation behaviour of poly(methyl hydrogen siloxane) and poly(n-hexyl methyl siloxane) has been studied as a function of temperature and frequency. A polysiloxane liquid crystal has been synthesised and its dielectric relaxation behaviour has been studied, as a function of temperature and frequency, in the liquid crystalline phase and below T_g. Poly(p-phenylene vinylene) and related oligomers have been synthesised and characterised by a variety of experimental techniques. The Kerr effect of two oligomeric fractions, in solution in PPG 2025, has been measured. The electrical conductivities of the undoped and I_2-doped polymer and oligomers have been measured.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Algae are a new potential biomass for energy production but there is limited information on their pyrolysis and kinetics. The main aim of this thesis is to investigate the pyrolytic behaviour and kinetics of Chlorella vulgaris, a green microalga. Under pyrolysis conditions, these microalgae show their comparable capabilities to terrestrial biomass for energy and chemicals production. Also, the evidence from a preliminary pyrolysis by the intermediate pilot-scale reactor supports the applicability of these microalgae in the existing pyrolysis reactor. Thermal decomposition of Chlorella vulgaris occurs in a wide range of temperature (200-550°C) with multi-step reactions. To evaluate the kinetic parameters of their pyrolysis process, two approaches which are isothermal and non-isothermal experiments are applied in this work. New developed Pyrolysis-Mass Spectrometry (Py-MS) technique has the potential for isothermal measurements with a short run time and small sample size requirement. The equipment and procedure are assessed by the kinetic evaluation of thermal decomposition of polyethylene and lignocellulosic derived materials (cellulose, hemicellulose, and lignin). In the case of non-isothermal experiment, Thermogravimetry- Mass Spectrometry (TG-MS) technique is used in this work. Evolved gas analysis provides the information on the evolution of volatiles and these data lead to a multi-component model. Triplet kinetic values (apparent activation energy, pre-exponential factor, and apparent reaction order) from isothermal experiment are 57 (kJ/mol), 5.32 (logA, min-1), 1.21-1.45; 9 (kJ/mol), 1.75 (logA, min-1), 1.45 and 40 (kJ/mol), 3.88 (logA, min-1), 1.45- 1.15 for low, middle and high temperature region, respectively. The kinetic parameters from non-isothermal experiment are varied depending on the different fractions in algal biomass when the range of apparent activation energies are 73-207 (kJ/mol); pre-exponential factor are 5-16 (logA, min-1); and apparent reaction orders are 1.32–2.00. The kinetic procedures reported in this thesis are able to be applied to other kinds of biomass and algae for future works.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relevant carbon-based materials, home-made carbon-silica hybrids, commercial activated carbon, and nanostructured multi-walled carbon nanotubes (MWCNT) were tested in the oxidative dehydrogenation of ethylbenzene (EB). Special attention was given to the reaction conditions, using a relatively concentrated EB feed (10 vol.% EB), and limited excess of O2 (O 2:EB = 0.6) in order to work at full oxygen conversion and consequently avoid O2 in the downstream processing and recycle streams. The temperature was varied between 425 and 475 °C, that is about 150-200 °C lower than that of the commercial steam dehydrogenation process. The stability was evaluated from runs of 60 h time on stream. Under the applied reactions conditions, all the carbon-based materials are apparently stable in the first 15 h time on stream. The effect of the gasification/burning was significantly visible only after this period where most of them fully decomposes. The carbon of the hybrids decomposes completely rendering the silica matrix and the activated carbon bed is fully consumed. Nano structured MWCNT is the most stable; the structure resists the demanding reaction conditions showing an EB conversion of ∼30% (but deactivating) with a steady selectivity of ∼80%. The catalyst stability under the ODH reaction conditions is predicted from the combustion apparent activation energies. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work studied the drying kinetics of the organic fractions of municipal solid waste (MSW) samples with different initial moisture contents and presented a new method for determination of drying kinetic parameters. A series of drying experiments at different temperatures were performed by using a thermogravimetric technique. Based on the modified Page drying model and the general pattern search method, a new drying kinetic method was developed using multiple isothermal drying curves simultaneously. The new method fitted the experimental data more accurately than the traditional method. Drying kinetic behaviors under extrapolated conditions were also predicted and validated. The new method indicated that the drying activation energies for the samples with initial moisture contents of 31.1 and 17.2 % on wet basis were 25.97 and 24.73 kJ mol−1. These results are useful for drying process simulation and industrial dryer design. This new method can be also applied to determine the drying parameters of other materials with high reliability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel route to prepare highly active and stable N2O decomposition catalysts is presented, based on Fe-exchanged beta zeolite. The procedure consists of liquid phase Fe(III) exchange at low pH. By varying the pH systematically from 3.5 to 0, using nitric acid during each Fe(III)-exchange procedure, the degree of dealumination was controlled, verified by ICP and NMR. Dealumination changes the presence of neighbouring octahedral Al sites of the Fe sites, improving the performance for this reaction. The so-obtained catalysts exhibit a remarkable enhancement in activity, for an optimal pH of 1. Further optimization by increasing the Fe content is possible. The optimal formulation showed good conversion levels, comparable to a benchmark Fe-ferrierite catalyst. The catalyst stability under tail gas conditions containing NO, O2 and H2O was excellent, without any appreciable activity decay during 70 h time on stream. Based on characterisation and data analysis from ICP, single pulse excitation NMR, MQ MAS NMR, N2 physisorption, TPR(H2) analysis and apparent activation energies, the improved catalytic performance is attributed to an increased concentration of active sites. Temperature programmed reduction experiments reveal significant changes in the Fe(III) reducibility pattern with the presence of two reduction peaks; tentatively attributed to the interaction of the Fe-oxo species with electron withdrawing extraframework AlO6 species, causing a delayed reduction. A low-temperature peak is attributed to Fe-species exchanged on zeolitic AlO4 sites, which are partially charged by the presence of the neighbouring extraframework AlO6 sites. Improved mass transport phenomena due to acid leaching is ruled out. The increased activity is rationalized by an active site model, whose concentration increases by selectively washing out the distorted extraframework AlO6 species under acidic (optimal) conditions, liberating active Fe species.