15 resultados para ACTIN-BINDING PROTEINS

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to metastasize away from the primary tumor site and migrate into adjacent tissues, cancer cells will stimulate cellular motility through the regulation of their cytoskeletal structures. Through the coordinated polymerization of actin filaments, these cells will control the geometry of distinct structures, namely lamella, lamellipodia and filopodia, as well as the more recently characterized invadopodia. Because actin binding proteins play fundamental functions in regulating the dynamics of actin polymerization, they have been at the forefront of cancer research. This review focuses on a subset of actin binding proteins involved in the regulation of these cellular structures and protrusions, and presents some general principles summarizing how these proteins may remodel the structure of actin. The main body of this review aims to provide new insights into how the expression of these actin binding proteins is regulated during carcinogenesis and highlights new mechanisms that may be initiated by the metastatic cells to induce aberrant expression of such proteins. © 2013 Landes Bioscience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Septins (SEPTs) form a family of GTP-binding proteins implicated in cytoskeleton and membrane organization, cell division and host/pathogen interactions. The precise function of many family members remains elusive. We show that SEPT6 and SEPT7 complexes bound to F-actin regulate protein sorting during multivesicular body (MVB) biogenesis. These complexes bind AP-3, an adapter complex sorting cargos destined to remain in outer membranes of maturing endosomes, modulate AP-3 membrane interactions and the motility of AP-3-positive endosomes. These SEPT-AP interactions also influence the membrane interaction of ESCRT (endosomal-sorting complex required for transport)-I, which selects ubiquitinated cargos for degradation inside MVBs. Whereas our findings demonstrate that SEPT6 and SEPT7 function in the spatial, temporal organization of AP-3- and ESCRT-coated membrane domains, they uncover an unsuspected coordination of these sorting machineries during MVB biogenesis. This requires the E3 ubiquitin ligase LRSAM1, an AP-3 interactor regulating ESCRT-I sorting activity and whose mutations are linked with Charcot-Marie-Tooth neuropathies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the actin cytoskeleton and the translation machinery are considered to be separate cellular complexes, growing evidence supports overlapping regulation of the two systems. Because of its interaction with actin, the eukaryotic translation elongation factor 1A (eEF1A) is proposed to be a regulator or link between these processes. Using a genetic approach with the yeast Saccharomyces cerevisiae, specific regions of eEF1A responsible for actin interactions and bundling were identified. Five new mutations were identified along one face of eEF1A. Dramatic changes in cell growth, cell morphology, and actin cable and patch formation as well as a unique effect on total translation in strains expressing the F308L or S405P eEF1A mutant form were observed. The translation effects do not correlate with reduced translation elongation but instead include an initiation defect. Biochemical analysis of the eEF1A mutant forms demonstrated reduced actin-bundling activity in vitro. Reduced total translation and/or the accumulation of 80S ribosomes in strains with either a mutation or a null allele of genes encoding actin itself or actin-regulating proteins Tpm1p, Mdm20p, and Bnirp/Bni1p was observed. Our data demonstrate that eEF1A, other actin binding proteins, and actin mutants affect translation initiation through the actin cytoskeleton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA-binding proteins are crucial for various cellular processes and hence have become an important target for both basic research and drug development. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to establish an automated method for rapidly and accurately identifying DNA-binding proteins based on their sequence information alone. Owing to the fact that all biological species have developed beginning from a very limited number of ancestral species, it is important to take into account the evolutionary information in developing such a high-throughput tool. In view of this, a new predictor was proposed by incorporating the evolutionary information into the general form of pseudo amino acid composition via the top-n-gram approach. It was observed by comparing the new predictor with the existing methods via both jackknife test and independent data-set test that the new predictor outperformed its counterparts. It is anticipated that the new predictor may become a useful vehicle for identifying DNA-binding proteins. It has not escaped our notice that the novel approach to extract evolutionary information into the formulation of statistical samples can be used to identify many other protein attributes as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA-binding proteins are crucial for various cellular processes, such as recognition of specific nucleotide, regulation of transcription, and regulation of gene expression. Developing an effective model for identifying DNA-binding proteins is an urgent research problem. Up to now, many methods have been proposed, but most of them focus on only one classifier and cannot make full use of the large number of negative samples to improve predicting performance. This study proposed a predictor called enDNA-Prot for DNA-binding protein identification by employing the ensemble learning technique. Experiential results showed that enDNA-Prot was comparable with DNA-Prot and outperformed DNAbinder and iDNA-Prot with performance improvement in the range of 3.97-9.52% in ACC and 0.08-0.19 in MCC. Furthermore, when the benchmark dataset was expanded with negative samples, the performance of enDNA-Prot outperformed the three existing methods by 2.83-16.63% in terms of ACC and 0.02-0.16 in terms of MCC. It indicated that enDNA-Prot is an effective method for DNA-binding protein identification and expanding training dataset with negative samples can improve its performance. For the convenience of the vast majority of experimental scientists, we developed a user-friendly web-server for enDNA-Prot which is freely accessible to the public. © 2014 Ruifeng Xu et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: DNA-binding proteins play a pivotal role in various intra- and extra-cellular activities ranging from DNA replication to gene expression control. Identification of DNA-binding proteins is one of the major challenges in the field of genome annotation. There have been several computational methods proposed in the literature to deal with the DNA-binding protein identification. However, most of them can't provide an invaluable knowledge base for our understanding of DNA-protein interactions. Results: We firstly presented a new protein sequence encoding method called PSSM Distance Transformation, and then constructed a DNA-binding protein identification method (SVM-PSSM-DT) by combining PSSM Distance Transformation with support vector machine (SVM). First, the PSSM profiles are generated by using the PSI-BLAST program to search the non-redundant (NR) database. Next, the PSSM profiles are transformed into uniform numeric representations appropriately by distance transformation scheme. Lastly, the resulting uniform numeric representations are inputted into a SVM classifier for prediction. Thus whether a sequence can bind to DNA or not can be determined. In benchmark test on 525 DNA-binding and 550 non DNA-binding proteins using jackknife validation, the present model achieved an ACC of 79.96%, MCC of 0.622 and AUC of 86.50%. This performance is considerably better than most of the existing state-of-the-art predictive methods. When tested on a recently constructed independent dataset PDB186, SVM-PSSM-DT also achieved the best performance with ACC of 80.00%, MCC of 0.647 and AUC of 87.40%, and outperformed some existing state-of-the-art methods. Conclusions: The experiment results demonstrate that PSSM Distance Transformation is an available protein sequence encoding method and SVM-PSSM-DT is a useful tool for identifying the DNA-binding proteins. A user-friendly web-server of SVM-PSSM-DT was constructed, which is freely accessible to the public at the web-site on http://bioinformatics.hitsz.edu.cn/PSSM-DT/.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The canonical function of eEF1A is delivery of the aminoacylated tRNA to the A site of the ribosome during protein translation, however, it is also known to be an actin binding protein. As well as this actin binding function, eEF1A has been shown to be involved in other cellular processes such as cell proliferation and apoptosis. It has long been thought that the actin cytoskeleton and protein synthesis are linked and eEF1A has been suggested to be a candidate protein to form this link, though very little is understood about the relationship between its two functions. Overexpression of eEF1A has also been shown to be implicated in many different types of cancers, especially cancers that are metastatic, therefore it is important to further understand how eEF1A can affect both translation and the organisation of the actin cytoskeleton. To this end, we aimed to determine the effects of reduced expression of eEF1A on both translation and its non canonical functions in CHO cells. We have shown that reduced expression of eEF1A in this cell system results in no change in protein synthesis, however results in an increased number of actin stress fibres and other proteins associated with these fibres such as myosin IIA, paxillin and vinculin. Cell motility and attachment are also affected by this reduction in eEF1A protein expression. The organisational and motility phenotypes were found to be specific to eEF1A by transforming the cells with plasmids containing either human eEF1A1 or eEF1A2. Though the mechanisms by which these effects are regulated have not yet been established, this data provides evidence to show that the translation and actin binding functions of eEF1A are independent of each other as well as being suggestive of a role for eEF1A in cell motility as supported by the observation that overexpression of eEF1A protein tends to be associated with the cancer cells that are metastatic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple protein-DNA interaction analysis has been developed using a high-affinity/high-specificity zinc finger protein. In essence, purified protein samples are immobilized directly onto the surface of microplate wells, and fluorescently labeled DNA is added in solution. After incubation and washing, bound DNA is detected in a standard microplate reader. The minimum sensitivity of the assay is approximately 0.2 nM DNA. Since the detection of bound DNA is noninvasive and the protein-DNA interaction is not disrupted during detection, iterative readings may be taken from the same well, after successive alterations in interaction conditions, if required. In this respect, the assay may therefore be considered real time and permits appropriate interaction conditions to be determined quantitatively. The assay format is ideally suited to investigate the interactions of purified unlabeled DNA binding proteins in a high-throughput format.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple protein-DNA interaction analysis has been developed using both a high-affinity/high-specificity zinc finger protein and a low-specificity zinc finger protein with nonspecific DNA binding capability. The latter protein is designed to mimic background binding by proteins generated in randomized or shuffled gene libraries. In essence, DNA is immobilized onto the surface of microplate wells via streptavidin capture, and green fluorescent protein (GFP)-labeled protein is added in solution as part of a crude cell lysate or protein mixture. After incubation and washing, bound protein is detected in a standard microplate reader. The minimum sensitivity of the assay is approximately 0.4 nM protein. The assay format is ideally suited to investigate the interactions of DNA binding proteins from within crude cell extracts and/or mixtures of proteins that may be encountered in protein libraries generated by codon randomization or gene shuffling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AM-112[1′R,5R,6R)-3-(4-amino-1,1-dimethyl-butyl)-6-(1′- hydroxyethyl)oxapenem-3-carboxylatel is a novel oxapenem compound which possesses potent β-lactamase-inhibitory properties. Fifty-percent inhibitory concentrations (IC50s) of AM-112 for class A enzymes were between 0.16 and 2.24 μM for three enzymes, compared to IC50s of 0.008 to 0.12 μM for clavulanic acid. Against class C and class D enzymes, however, the activity of AM-112 was between 1,000- and 100,000-fold greater than that of clavulanic acid. AM-112 had affinity for the penicillin-binding proteins (PBPs) of Escherichia coli DC0, with PBP2 being inhibited by the lowest concentration of AM-112 tested, 0.1 μg/ml. Ceftazidime was combined with AM-112 at 1:1 and 2:1 ratios in MIC determination studies against a panel of β-lactamase-producing organisms. These studies demonstrated that AM-112 was effective at protecting ceftazidime against extended-spectrum β-lactamase-producing strains and derepressed class C enzyme producers, reducing ceftazidime MICs by 16- and 2,048-fold. Similar results were obtained when AM-112 was combined with ceftriaxone, cefoperazone, or cefepime in a 1:2 ratio. Protection of ceftazidime with AM-112 was maintained against Enterobacter cloacae P99 and Klebsiella pneumoniae SHV-5 in a murine intraperitoneal sepsis model. The 50% effective dose of ceftazidime against E. cloacae P99 and K. pneumoniae SHV-5 was reduced from >100 and 160 mg/kg of body weight to 2 and 33.6 mg/kg, respectively, when it was combined with AM-112 at a 1:1 ratio. AM-112 demonstrates potential as a new β-lactamase inhibitor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the objectives of the molecular biological study of glaucoma is to establish how the disease develops as a result of the production of aberrant gene products. Many of the genes associated with glaucoma code for proteins which are likely to be directly or indirectly involved in the development and/or function of cells within the trabecular meshwork. The identification of specific defects in these genes is likely to lead to a better understanding of the mechanisms involved in PCG and glaucoma in general and to the development of alternative therapies to surgery. The CYP1B1 gene in particular, which is a linked to congenital glaucoma, and is expressed in the trabecular meshwork, codes for a member of the cytochrome P450 group of proteins. These iron binding proteins constitute a family of enzymes involved in the processes of xenobiotic metabolism, growth, and development. The discovery of the CYP1B1 gene in PCG emphases the importance of abnormalities in the molecular structure of proteins expressed in cells of the trabecular network as a cause of PCG. The identification of specific genetic defects leads to the possibility of more widespread screening for PCG especially in affected families and hence, the possibility of the identification of asymptomatic carriers of the disease. Early identification of 'at risk' parents may then enable earlier detection of PCG and intervention in the infant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cachexia is a wasting syndrome often associated with malignancy, characterised by alterations in host metabolism and significant catabolism of host adipose tissue and skeletal muscle. The MAC16 murine adenocarcinoma is profoundly cachexigenic, inducing host weight-loss at relatively small tumour burden without the induction of anorexia. A 4DkDa factor capable of inducing lipolysis in vitro via an activation of adenylate cyclase (AC) has been isolated from the MAC16 tumour, and the urine of cachectic cancer patients, using a series of ion exchange and gel exclusion chromatography procedures. This lipid-mobilising factor (LMF) has been demonstrated to stimulate lipolysis in adipocytes dose-dependently via a signal transduction pathway involving, possibly, β3-adrenoceptors. Oral administration of the n-3 polyunsaturated fatty acid (PUFA) eicosapentaenoic acid (EPA) attenuated the progression of cachexia, but not the production of LMF, in MAC16 tumour-bearing mice, and was significantly incorporated into plasma phospholipids, skeletal muscle and adipose tissue. EPA supplemented cancer patients also demonstrated significantly increased plasma EPA concentrations. Decreased plasma membrane AC activity in response to LMF was observed in adipocytes isolated from mice receiving EPA. Incubation in vitro of adipocytes, or plasma membranes, with PUFAs significantly altered membrane fatty acid composition and attenuated the induction of both lipolysis, and AC activity, by LMF. The inhibitory actions of EPA, but not docosahexaenoic acid, are probably the consequence of an interaction with guanine nucleotide binding proteins (G-proteins). Progression of the cachectic state induced an up-regulation of adipocyte membrane expression of stimulatory G-proteins, allied with a concomitant down-regulation of inhibitory G-proteins, thus facilitating the catabolic actions of LMF, implying some tumour-mediated effect. A reversal of such alterations was observed upon oral administration of EPA, suggesting that the primary mechanism of action of this fatty acid is an inhibition of the end organ effects of LMF.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cachexia in cancer is characterised by progressive depletion of both adipose tissue stores and skeletal muscle mass. Two catabolic factors produced by cachexia-inducing tumours have the potential for inducing these changes in body composition: (i) proteolysis-inducing factor (PIF) which acts on skeletal muscle to induce both protein degradation and inhibit protein synthesis, (ii) lipid-mobilising factor (LMF), which has been shown to directly induce lipolysis in isolated epididymal murine white adipocytes. Administration of lipid-mobilising factor (LMF) to mice produced a specific reduction in carcass lipid with a tendency to increase non-fat carcass mass. Treatment of murine myoblasts, myotubes and tumour cells with tumour-produced LMF, caused concentration dependent stimulation of protein synthesis, within a 24hr period. It produced an increase in intracellular cyclic AMP levels, which was linearly related to the increase in protein synthesis. The observed effect was attenuated by pretreating cells with the adenylate cyclase inhibitor, MDL12330A and was additive with stimulation produced by forskolin. Both propranolol and a specific 3 adrenergic antagonist SR59230A, significantly reduced the stimulation of protein synthesis induced by LMF. LMF also affected protein degradation in vitro, as demonstrated by a reduction in proteasome activity, a key component of the ubiquitin-dependent proteolytic pathway. These effects were opposite to those produced by PIF which caused both a decrease in the rate of protein synthesis and an elevation on protein breakdown when incubated in vitro.Incubation of LMF with a fat cell line produced alterations in the levels of guanine-nucleotide binding proteins (G proteins). This was also evident in adipocyte plasma membranes isolated from mice bearing the tumour model of cachexia, MAC16 adenocarcinoma and from patients with cancer cachexia. Progression through the cachectic state induced an upregulation of stimulatory G proteins paralleled with a downregulation of inhibitory G proteins. These changes would contribute to the increased lipid mobilisation seen in cancer cachexia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The antitumour imidazotetrazinones are believed to act as prodrugs for the triazene series of alkylating agents, showing a marked pteference for the alkylation of the middle guanine residue in a run of three or more contiguous guanines. However, the. exact nature of the interactions of imidazotetrazinones within the micro~environment of DNA are; as yet unknown. In order to examine such interactions a three pronged approach involving molecular modelling, synthetic chemistry and biological analysis has been undertaken during the course of this project. . Molecular modelling studies have shown that for the 8-carboxamido substituted imidazotetrazinones antitumour activity is dependent upon the. presence of a free NH group which can be involved in the formation of both intramolecular and intermolecular hydrogen bonds, and the presence of a non-bulky substituent with a small negative potential . volume. Modelling studies involving the docking of .mitozolomide into the major groove of DNA in the region of a triguanine sequence has shown that a number of hydrogen bonding interactions are feasible. A series of 8-substituted carboxamide derivatives of mitozolomide have been synthesised via the 8-acid chloride and 8-carboxylic acid derivatives including a number of peptide analogues. The peptide derivatives were based upon the key structural features of the helix-turn-helix motif of DNA-binding proteins with a view to developing agents that are capable of binding to DNA with greater selectivity. An examination of the importance of intramolecular hydrogen bonding in influencing the antitumour activity:of :the imidazotetrazinones has led to the synthesis of the novel pyrimido[4',5' :4,3]pyrazolo[5,1-d]-1,2,3,5-tetrazine ring system. In general, in vitro cytotoxicity assays showed that the new derivatives were less active against the TLX5 lymphoma cell line. than the parent compound mitozolomide despite an increased potential for hydrogen bonding interactions. Due to the high reactivity of the: tetrazinone ring system it is difficult to study the interactions between the imidazotetrazinones and DNA. Consequently a number of structural analogues that are stable under physiological conditions have been. prepared based upon the 1,2,3 triazin-4(3H)-one ring system fused with both benzene and pyrazole rings. Although the 3-methylbenzotriazinones failed to antagonise the cytotoxic activity of temozolomide encouraging results with a 3-methylpyrazolotriazinone may suggest the existence of an imidazotetrazinone receptor site within DNA. The potential of guanine rich sequences to promote the alkylating selectivity of imidazotetrazinones by acting as a catalyst for ring cleavage and thereby generation of the alkylating agent was examined. Experiments involving the monitoring: of the rate of breakdown of mitozolomide incubated in the presence of synthetic oIigonucleotides did not reveal any catalytic effect resulting from the DNA. However, it was noted that the breakdown of mitozolomide was dependent upon the type of buffer used in the incubations and this may indeed mask any catalysis by the oligonucleotides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a novel multilocus sequence typing (MLST) scheme and database (http://pubmlst.org/pacnes/) for Propionibacterium acnes based on the analysis of seven core housekeeping genes. The scheme, which was validated against previously described antibody, single locus and random amplification of polymorphic DNA typing methods, displayed excellent resolution and differentiated 123 isolates into 37 sequence types (STs). An overall clonal population structure was detected with six eBURST groups representing the major clades I, II and III, along with two singletons. Two highly successful and global clonal lineages, ST6 (type IA) and ST10 (type IB1), representing 64?% of this current MLST isolate collection were identified. The ST6 clone and closely related single locus variants, which comprise a large clonal complex CC6, dominated isolates from patients with acne, and were also significantly associated with ophthalmic infections. Our data therefore support an association between acne and P. acnes strains from the type IA cluster and highlight the role of a widely disseminated clonal genotype in this condition. Characterization of type I cell surface-associated antigens that are not detected in ST10 or strains of type II and III identified two dermatan-sulphate-binding proteins with putative phase/antigenic variation signatures. We propose that the expression of these proteins by type IA organisms contributes to their role in the pathophysiology of acne and helps explain the recurrent nature of the disease. The MLST scheme and database described in this study should provide a valuable platform for future epidemiological and evolutionary studies of P. acnes.