2 resultados para ACID BACTERIA
em Aston University Research Archive
Resumo:
Purpose To investigate the prevalence of infected herniated nucleus material in lumbar disc herniations and to determine if patients with an anaerobic infected disc are more likely to develop Modic change (MC) (bone oedema) in the adjacent vertebrae after the disc herniation. MCs (bone oedema) in vertebrae are observed in 6 % of the general population and in 35-40 % of people with low back pain. These changes are strongly associated with low back pain. There are probably a mechanical cause and an infective cause that causes MC. Several studies on nuclear tissue from herniated discs have demonstrated the presence of low virulent anaerobic microorganisms, predominantly Propionibacterium acnes, in 7-53 % of patients. At the time of a herniation these low virulent anaerobic bacteria may enter the disc and give rise to an insidious infection. Local inflammation in the adjacent bone may be a secondary effect due to cytokine and propionic acid production. Methods Patients undergoing primary surgery at a single spinal level for lumbar disc herniation with an MRI-confirmed lumbar disc herniation, where the annular fibres were penetrated by visible nuclear tissue, had the nucleus material removed. Stringent antiseptic sterile protocols were followed. Results Sixty-one patients were included, mean age 46.4 years (SD 9.7), 27 % female. All patients were immunocompetent. No patient had received a previous epidural steroid injection or undergone previous back surgery. In total, microbiological cultures were positive in 28 (46 %) patients. Anaerobic cultures were positive in 26 (43 %) patients, and of these 4 (7 %) had dual microbial infections, containing both one aerobic and one anaerobic culture. No tissue specimens had more than two types of bacteria identified. Two (3 %) cultures only had aerobic bacteria isolated. In the discs with a nucleus with anaerobic bacteria, 80 % developed new MC in the vertebrae adjacent to the previous disc herniation. In contrast, none of those with aerobic bacteria and only 44 % of patients with negative cultures developed new MC. The association between an anaerobic culture and new MCs is highly statistically significant (P = 0.0038), with an odds ratio of 5.60 (95 % CI 1.51-21.95). Conclusion These findings support the theory that the occurrence of MCs Type 1 in the vertebrae adjacent to a previously herniated disc may be due to oedema surrounding an infected disc. The discs infected with anaerobic bacteria were more likely (P<0.0038) to develop MCs in the adjacent vertebrae than those in which no bacteria were found or those in which aerobic bacteria were found. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria (Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test. © 2008 American Chemical Society.