2 resultados para ABSORPTION ELECTRONIC SPECTRUM
em Aston University Research Archive
Resumo:
We present the results of experimental and theoretical study of an energy absorption of femtosecond laser pulse in fused silica. Fundamental and second harmonics of ytterbium laser were used in experiment while general case was considered theoretically and numerically. More efficient absorption at the second harmonics is confirmed both experimentally and numerically. Quantitative characterization of the theoretical model is performed by fitting key parameters of the absorption process such as cross-section of multi-photon absorption and effective electronic collision and recombination times.
Resumo:
Herein, we demonstrate the synthesis of highly efficient Fe-doped graphitic carbon nitride (g-C3N4) nanosheets via a facile and cost effective method. The synthesized Fe-doped g-C3N4 nanosheets were well characterized by various analytical techniques. The results revealed that the Fe exists mainly in the +3 oxidation state in the Fe-doped g-C3N4 nanosheets. Fe doping of g-C3N4 nanosheets has a great influence on the electronic and optical properties. The diffuse reflectance spectra of Fe-doped g-C3N4 nanosheets exhibit red shift and increased absorption in the visible light range, which is highly beneficial for absorbing the visible light in the solar spectrum. More significantly, the Fe-doped g-C3N4 nanosheets exhibit greatly enhanced photocatalytic activity for the degradation of Rhodamine B under sunlight irradiation. The photocatalytic activity of 2 mol% Fe-doped g-C3N4 nanosheets is almost 7 times higher than that of bulk g-C3N4 and 4.5 times higher than that of pure g-C3N4 nanosheets. A proposed mechanism for the enhanced photocatalytic activity of Fe-doped g-C3N4 nanosheets was investigated by trapping experiments. The synthesized photocatalysts are highly stable even after five successive experimental runs. The enhanced photocatalytic performance of Fe-doped g-C3N4 nanosheets is due to high visible light response, large surface area, high charge separation and charge transfer. Therefore, the Fe-doped g-C3N4 photocatalyst is a promising candidate for energy conversion and environmental remediation.