5 resultados para ABC Pool
em Aston University Research Archive
Resumo:
In human vision, the response to luminance contrast at each small region in the image is controlled by a more global process where suppressive signals are pooled over spatial frequency and orientation bands. But what rules govern summation among stimulus components within the suppressive pool? We addressed this question by extending a pedestal plus pattern mask paradigm to use a stimulus with up to three mask components: a vertical 1 c/deg pedestal, plus pattern masks made from either a grating (orientation = -45°) or a plaid (orientation = ±45°), with component spatial frequency of 3 c/deg. The overall contrast of both types of pattern mask was fixed at 20% (i.e., plaid component contrasts were 10%). We found that both of these masks transformed conventional dipper functions (threshold vs. pedestal contrast with no pattern mask) in exactly the same way: The dipper region was raised and shifted to the right, but the dipper handles superimposed. This equivalence of the two pattern masks indicates that contrast summation between the plaid components was perfectly linear prior to the masking stage. Furthermore, the pattern masks did not drive the detecting mechanism above its detection threshold because they did not abolish facilitation by the pedestal (Foley, 1994). Therefore, the pattern masking could not be attributed to within-channel masking, suggesting that linear summation of contrast signals takes place within a suppressive contrast gain pool. We present a quantitative model of the effects and discuss the implications for neurophysiological models of the process. © 2004 ARVO.
Resumo:
Foley [J. Opt. Soc. Am. A 11 (1994) 1710] has proposed an influential psychophysical model of masking in which mask components in a contrast gain pool are raised to an exponent before summation and divisive inhibition. We tested this summation rule in experiments in which contrast detection thresholds were measured for a vertical 1 c/deg (or 2 c/deg) sine-wave component in the presence of a 3 c/deg (or 6 c/deg) mask that had either a single component oriented at -45° or a pair of components oriented at ±45°. Contrary to the predictions of Foley's model 3, we found that for masks of moderate contrast and above, threshold elevation was predicted by linear summation of the mask components in the inhibitory stage of the contrast gain pool. We built this feature into two new models, referred to as the early adaptation model and the hybrid model. In the early adaptation model, contrast adaptation controls a threshold-like nonlinearity on the output of otherwise linear pathways that provide the excitatory and inhibitory inputs to a gain control stage. The hybrid model involves nonlinear and nonadaptable routes to excitatory and inhibitory stages as well as an adaptable linear route. With only six free parameters, both models provide excellent fits to the masking and adaptation data of Foley and Chen [Vision Res. 37 (1997) 2779] but unlike Foley and Chen's model, are able to do so with only one adaptation parameter. However, only the hybrid model is able to capture the features of Foley's (1994) pedestal plus orthogonal fixed mask data. We conclude that (1) linear summation of inhibitory components is a feature of contrast masking, and (2) that the main aftereffect of spatial adaptation on contrast increment thresholds can be assigned to a single site. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up awide range of possibilities for the future study of their structure and function. © The Authors Journal compilation © 2014 Biochemical Society.