6 resultados para A-type zeolite membrane

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proton pumping nicotinamide nucleotide transhydrogenase from Escherichia coli contains an α subunit with the NAD(H)-binding domain I and a β subunit with the NADP(H)-binding domain III. The membrane domain (domain II) harbors the proton channel and is made up of the hydrophobic parts of the α and β subunits. The interface in domain II between the α and the β subunits has previously been investigated by cross-linking loops connecting the four transmembrane helices in the α subunit and loops connecting the nine transmembrane helices in the β subunit. However, to investigate the organization of the nine transmembrane helices in the β subunit, a split was introduced by creating a stop codon in the loop connecting transmembrane helices 9 and 10 by a single mutagenesis step, utilizing an existing downstream start codon. The resulting enzyme was composed of the wild-type α subunit and the two new peptides β1 and β2. As compared to other split membrane proteins, the new transhydrogenase was remarkably active and catalyzed activities for the reduction of 3-acetylpyridine-NAD + by NADPH, the cyclic reduction of 3-acetylpyridine-NAD + by NADH (mediated by bound NADP(H)), and proton pumping, amounting to about 50-107% of the corresponding wild-type activities. These high activities suggest that the α subunit was normally folded, followed by a concerted folding of β1 + β2. Cross-linking of a βS105C-βS237C double cysteine mutant in the functional split cysteine-free background, followed by SDS-PAGE analysis, showed that helices 9, 13, and 14 were in close proximity. This is the first time that cross-linking between helices in the same β subunit has been demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies show that membrane transport mechanisms are regulated by signalling molecules. Recently, genome-wide screen analyses in C.elegans have enabled scientists to identify novel regulators in membrane trafficking and also signalling molecules which are found to couple with this machinery. Fibroblast growth factor (FGF) via binding to fibroblast growth factor receptor (FGFR) mediate signals which are essential in the development of an organism, patterning, cell migration and tissue homeostasis. Impaired FGFR-mediated signalling has been associated with various developmental, neoplastic, metabolic and neurological diseases and cancer. In this study, the potential role of FGFR-mediated signalling pathway as a regulator of membrane trafficking was investigated. The GFP-tagged yolk protein YP170-GFP trafficking was analysed in worms where 1) FGFR signalling cascade components were depleted by RNAi and 2) in mutant animals. From these results, it was found that the disruption of the genes egl-15 (FGFR), egl-17(FGF), let-756(FGF), sem-5, let-60, lin-45, mek-2, mpk-1 and plc-3 lead to abnormal localization of YP170-GFP, suggesting that signalling downstream of FGFR via activation of MAPK and PLC-γ pathway is regulating membrane transport. The route of trafficking was further investigated, to pinpoint which membrane step is regulated by worm FGFR, by analysing a number of GFP-tagged intracellular membrane markers in the intestine of Wild Type (WT) and FGFR mutant worms. FGFR mutant worms showed a significant difference in the localisation of several endosomal membrane markers, suggesting its regulatory role in early and recycling steps of endocytosis. Finally, the trafficking of transferrin in a mammalian NIH/3T3 cell line was investigated to identify the conservation of these membrane trafficking regulatory mechanisms between organisms. Results showed no significant changes in transferrin trafficking upon FGFR stimulation or inhibition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dipeptidyl peptidase IV (DPP IV) is a widely distributed physiological enzyme that can be found solubilized in blood, or membrane-anchored in tissues. DPP IV and related dipeptidase enzymes cleave a wide range of physiological peptides and have been associated with several disease processes including Crohn's disease, chronic liver disease, osteoporosis, multiple sclerosis, eating disorders, rheumatoid arthritis, cancer, and of direct relevance to this review, type 2 diabetes. Here, we place particular emphasis on two peptide substrates of DPP IV with insulin-releasing and antidiabetic actions namely, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). The rationale for inhibiting DPP IV activity in type 2 diabetes is that it decreases peptide cleavage and thereby enhances endogenous incretin hormone activity. A multitude of novel DPP IV inhibitor compounds have now been developed and tested. Here we examine the information available on DPP IV and related enzymes, review recent preclinical and clinical data for DPP IV inhibitors, and assess their clinical significance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years there has been growing interest in the use of dimethyl ether (DME) as an alternative fuel. In this study, the adsorption of DME on molecular sieves 4Å (Mol4A) and 5Å (Mol5A) has been experimentally investigated using the volumetric adsorption method. Data on the adsorption isotherms, heats of adsorption, and adsorption kinetic have been obtained and used to draw conclusions and compare the performance of the two adsorbents. Within the conditions considered, the adsorption capacity of Mol5A was found to be around eight times higher than the capacity of Mol4A. Low temperature adsorption and thermal pre-treatment of the adsorbents in vacuum were observed to be favourable for increased adsorption capacity. The adsorption isotherms for both adsorbent were fitted to the Freundlich model and the corresponding model parameters are proposed. The adsorption kinetic analysis suggest that the DME adsorption on Mol5A is controlled by intracrystalline diffusion resistance, while on Mol4A it is mainly controlled by surface layering resistance with the diffusion only taking place at the start of adsorption and for a very limited short time. The heats of adsorption were calculated by a calorimetric method based on direct temperature measurements inside the adsorption cell. Isosteric heats, calculated by the thermodynamic approach (Clasius-Clapeyron equation), have consistently shown lower values. The maximum heat of adsorption was found to be 25.9kJmol-1 and 20.1kJmol-1 on Mol4A and Mol5A, respectively; thus indicating a physisorption type of interactions. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 60% of pharmaceuticals target membrane proteins; 30% of the human genome codes for membrane proteins yet they represent less than 1% of known unique crystal structures deposited in the Protein Data Bank (PDB), with 50% of structures derived from recombinant membrane proteins having been synthesized in yeasts. G protein-coupled receptors (GPCRs) are an important class of membrane proteins that are not naturally abundant in their native membranes. Unfortunately their recombinant synthesis often suffers from low yields; moreover, function may be lost during extraction and purification from cell membranes, impeding research aimed at structural and functional determination. We therefore devised two novel strategies to improve functional yields of recombinant membrane proteins in the yeast Saccharomyces cerevisiae. We used human adenosine A2A receptor (hA2AR) as a model GPRC since it is functionally and structurally well characterised.In the first strategy, we investigated whether it is possible to provide yeast cells with a selective advantage (SA) in producing the fusion protein hA2AR-Ura3p when grown in medium lacking uracil; Ura3p is a decarboxylase that catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, generating uridine monophosphate. The first transformant (H1) selected using the SA strategy gave high total yields of hA2AR-Ura3p, but low functional yields as determined by radio-ligand binding, leading to the discovery that the majority of the hA2AR-Ura3p had been internalized to the vacuole. The yeast deletion strain spt3Δ is thought to have slower translation rates and improved folding capabilities compared to wild-type cells and was therefore utilised for the SA strategy to generate a second transformant, SU1, which gave higher functional yields than H1. Subsequently hA2AR-Ura3p from H1 was solubilised with n-dodecyl-β-D-maltoside and cholesteryl hemisuccinate, which yielded functional hA2AR-Ura3p at the highest yield of all approaches used. The second strategy involved using knowledge of translational processes to improve recombinant protein synthesis to increase functional yield. Modification of existing expression vectors with an internal ribosome entry site (IRES) inserted into the 5ˊ untranslated region (UTR) of the gene encoding hA2AR was employed to circumvent regulatory controls on recombinant synthesis in the yeast host cell. The mechanisms involved were investigated through the use of yeast deletion strains and drugs that cause translation inhibition, which is known to improve protein folding and yield. The data highlight the potential to use deletion strains to increase IRES-mediated expression of recombinant hA2AR. Overall, the data presented in this thesis provide mechanistic insights into two novel strategies that can increase functional membrane protein yields in the eukaryotic microbe, S. cerevisiae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current anti-angiogenic treatments involve the attenuation of signalling via the pro-angiogenic vascular endothelial growth factor/receptor (VEGF/VEGFR) axis. Stimulation of angiogenesis by VEGF requires the activation of the calcineurin/nuclear factor of activated T-cells (NFAT) signal transduction pathway which is inhibited by Plasma Membrane Calcium ATPase 4 (PMCA4), an endogenous calcium extrusion pump. However, PMCA4s role in calcineurin/NFAT-dependent angiogenesis is unknown. Using “gain of function” studies, we show here that adenoviral overexpression of PMCA4 in human umbilical vein endothelial cells (HUVEC) inhibited NFAT activity, decreased the expression of NFAT-dependent pro-angiogenic proteins (regulator of calcineurin 1.4 (RCAN1.4) and cyclooxygenase-2) and diminished in vitro cell migration and tube formation in response to VEGF-stimulation. Furthermore, in vivo blood vessel formation was attenuated in a matrigel plug assay by ectopic expression of PMCA4. Conversely, “loss of function” experiments by si-RNA-mediated knockdown of PMCA4 in HUVEC or isolation of mouse lung endothelial cells from PMCA4−/− mice showed increased VEGF-induced NFAT activity, RCAN1.4 expression, in vitro endothelial cell migration, tube formation and in vivo blood vessel formation. Additionally, in an in vivo pathological angiogenesis model of limb ischemia, the reperfusion of the ischemic limb of PMCA4−/− mice was augmented compared to wild-type. Disruption of the interaction between endogenous PMCA4 and calcineurin by adenoviral overexpression of the region of PMCA4 that interacts with calcineurin (residues 428–651) increased NFAT activity, RCAN1.4 protein expression and in vitro tube formation. These results identify PMCA4 as an inhibitor of VEGF-induced angiogenesis, highlighting its potential as a new therapeutic target for anti-angiogenic treatments.