6 resultados para 710600 Other Commercial Services

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter provides the theoretical foundation and background on data envelopment analysis (DEA) method. We first introduce the basic DEA models. The balance of this chapter focuses on evidences showing DEA has been extensively applied for measuring efficiency and productivity of services including financial services (banking, insurance, securities, and fund management), professional services, health services, education services, environmental and public services, energy services, logistics, tourism, information technology, telecommunications, transport, distribution, audio-visual, media, entertainment, cultural and other business services. Finally, we provide information on the use of Performance Improvement Management Software (PIM-DEA). A free limited version of this software and downloading procedure is also included in this chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work described was carried out as part of a collaborative Alvey software engineering project (project number SE057). The project collaborators were the Inter-Disciplinary Higher Degrees Scheme of the University of Aston in Birmingham, BIS Applied Systems Ltd. (BIS) and the British Steel Corporation. The aim of the project was to investigate the potential application of knowledge-based systems (KBSs) to the design of commercial data processing (DP) systems. The work was primarily concerned with BIS's Structured Systems Design (SSD) methodology for DP systems development and how users of this methodology could be supported using KBS tools. The problems encountered by users of SSD are discussed and potential forms of computer-based support for inexpert designers are identified. The architecture for a support environment for SSD is proposed based on the integration of KBS and non-KBS tools for individual design tasks within SSD - The Intellipse system. The Intellipse system has two modes of operation - Advisor and Designer. The design, implementation and user-evaluation of Advisor are discussed. The results of a Designer feasibility study, the aim of which was to analyse major design tasks in SSD to assess their suitability for KBS support, are reported. The potential role of KBS tools in the domain of database design is discussed. The project involved extensive knowledge engineering sessions with expert DP systems designers. Some practical lessons in relation to KBS development are derived from this experience. The nature of the expertise possessed by expert designers is discussed. The need for operational KBSs to be built to the same standards as other commercial and industrial software is identified. A comparison between current KBS and conventional DP systems development is made. On the basis of this analysis, a structured development method for KBSs in proposed - the POLITE model. Some initial results of applying this method to KBS development are discussed. Several areas for further research and development are identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a multi-theoretic approach, drawing on economic, institutional, managerial power and social comparison literatures to explain the role of the external compensation consultant in the top management pay setting institutional field. Taking advantage of recent disclosure requirements in the UK, we collect data on compensation consultant use in 232 large companies. We show that consultants are a prevalent part of the CEO pay setting scene, and document evidence of all advisor use. Our econometric results show that consultant use is associated with firm size and the equity pay mix. We also show that CEO pay is positively associated with peer firms that share consultants, with higher board and consultant interlocks, and some evidence that where firms supply other business services to the firm, CEO pay is greater. © 2009 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommender systems (RS) are used by many social networking applications and online e-commercial services. Collaborative filtering (CF) is one of the most popular approaches used for RS. However traditional CF approach suffers from sparsity and cold start problems. In this paper, we propose a hybrid recommendation model to address the cold start problem, which explores the item content features learned from a deep learning neural network and applies them to the timeSVD++ CF model. Extensive experiments are run on a large Netflix rating dataset for movies. Experiment results show that the proposed hybrid recommendation model provides a good prediction for cold start items, and performs better than four existing recommendation models for rating of non-cold start items.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study explores differences between men and women entrepreneurs and social entrepreneurs. It explores the barriers and discriminatory effects that hinder women’s entrepreneurship, including access to finance in the European Union. The study includes four case studies covering the situation in the Czech Republic, Italy, Sweden, and the United Kingdom.