3 resultados para 630504 Primary products from animals

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research investigates the fuel property variations associated with the time of harvest and the duration of storage of Miscanthus x giganteus over a one year period. The crop has been harvested at three different times: early (September 2009), conventional (April 2010) and late (June 2010). Once harvested the crop was baled and stored. Biomass properties of samples taken from different storage zones were compared. The thermochemical properties have been investigated using a range of analytical equipment including thermogravimetric analysis (TGA) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). In addition, bio-oil has been produced from the early, conventional and late harvest using a laboratory scale (300gh) fast pyrolysis unit. The potential organic liquid yield (ondry basis, also excluding the reaction water generated) based on the laboratory fast pyrolysis processing undertaken in this study, was found to vary between 2.82 and 3.18 dry tha for the early and the late harvest respectively. The bio-oil organic yield was reduced by approximately 11% (0.36tha) between the early and the late harvest. Char yield was also reduced by approximately 18% (0.61tha). The highest gas yield (18.03%-1.60tha) was observed for the conventional harvest. Gas chromatography-mass spectrometry (GC-MS) analysis of the bio-oil shows that levoglucosan, methylbenzaldehyde and 1,2-benzenediol all increase as a consequence of delayed harvest. It was also observed that by delaying the harvest time the O:C atomic ratio is reduced and a more carbonaceous feedstock is produced. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel reaction pathways for the hypervalent iodine-mediated oxidation of bioactive phenols containing extended conjugated π-systems are described. Oxidation of 4-hydroxystilbenes in methanol using a hypervalent iodine-based oxidant led to the formal 1,2-addition of methoxy groups across the central stilbene double bond. Treatment of the structurally related 4-hydroxyisoflavone with di(trifluoroacetoxy)iodobenzene leads to the surprising formation of 2,4′-dihydroxybenzil. Potential mechanisms for these new reaction pathways are discussed, and the X-ray crystal structure of 2,4′-dihydroxybenzil is presented. In contrast, oxidation of the corresponding 3-hydroxystilbenes and 3-hydroxyisoflavone led to conventional dienone oxidation products. The antitumour implications of these oxidation processes are briefly highlighted; the novel 4-substituted phenolic oxidation products were found to be inactive in terms of in vitro antitumour cellular activity, whereas the 3-substituted phenol products gave novel agents with potent and enhanced antitumour activity in the HCT 116 cancer cell line. © The Royal Society of Chemistry 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A prominent feature of several type of cancer is cachexia. This syndrome causes a marked loss of lean body mass and muscle wasting, and appears to be mediated by cytokines and tumour products. There are several proteases and proteolytic pathways that could be responsible for the protein breakdown. In the present study, we investigated whether caspases are involved in the proteolytic process of skeletal muscle catabolism observed in a murine model of cancer cachexia (MAC16), in comparison with a related tumour (MAC13), which does not induce cachexia. Using specific peptide substrates, there was an increase of 54% in the proteolytic activity of caspase-1, 84% of caspase-8, 98% of caspase-3 151% to caspase-6 and 177% of caspase-9, in the gastrocnemius muscle of animals bearing the MAC16 tumour (up to 25% weight loss), in relation to muscle from animals bearing the MAC13 tumour (1-5% weight loss). The dual pattern of 89 kDa and 25 kDa fragmentation of poly (ADP-ribose) polymerase (PARP) occurred in the muscle samples from animals bearing the MAC16 tumour and with a high amount of caspase-like activity. Cytochrome c was present in the cytosolic fractions of gastrocnemius muscles from both groups of animals, suggesting that cytochrome c release from mitochondria may be involved in caspase activation. There was no evidence for DNA fragmentation into a nucleosomal ladder typical of apoptosis in the muscles of either group of mice. This data supports a role for caspases in the catabolic events in muscle involved in the cancer cachexia syndrome. © 2001 Cancer Research Campaign.