5 resultados para 5-fluorouracil (5-FU)
em Aston University Research Archive
Resumo:
Bis-cyclic butenolides, 5-arylated 2(5H)-furanones 6a-c, 7a, b and the 3(2H)-pyridazones 9a-d were prepared by using the aldehyde form of muco halogen acids in electrophilic substitution reactions and in an aldol-like condensation reaction. The cytotoxicity of these simple and bis-cyclic butenolides have been evaluated in tissue culture studies on MAC 13 and MAC 16 murine colon cancer cell lines. The butyl furanone 3 displayed the highest cytotoxicity of 3 μM, as one selected example of a series of dichlorinated pseudoesters. The 5-arylated 2(5H)-furanones 6 and 7 did not show a structure-activity relationship (SAR) depending on the substitution pattern of the aromatic system. An IC50 (concentration inhibiting growth by 50%) was found within a range of 30-50 and 40-50 μM for the MAC 13 and MAC 16 cell lines, respectively. The pyridazine series 9 showed a maximum in-vitro activity for the p-methoxydrivative 9b, having an IC50 of 17 in MAC 13 and 11 μM in MAC 16 cell lines. Selected examples of each series and further novel 2(5H)-furanones such as the hydrazone 5 and the hydantoin 8 have been screened in-vivo in mice and the data are presented. For the pyridazines 9a-d, the in-vitro cytotoxicity correlated with an in-vivo inhibition of tumour growth. The ring expansion of the 5-membered 2(5H)-furanone ring system such as 6a into the 6-membered 3(2H)-pyridazone 9b led to an agent with improved antineoplastic properties. On the resistant MAC 16 cell line the pyridazone 9b displayed 52% tumour inhibition in mice at a dose of 50 mg kg-1 compared with 27% for the 5-FU standard.
Resumo:
Antisense oligonucleotides (AODNs) can selectively inhibit individual gene expression by binding specifically to rnRNA. The over-expression of the epidermal growth factor receptor (EGFR) has been observed in human breast and glioblastoma tumours and therefore AODNs designed to target the EGFR would be a logical approach to treat such tumours. However, poor pharmacokinetic/pharmacodynamic and cellular uptake properties of AODNs have limited their potential to become successful therapeutic agents. Biodegradable polymeric poly (lactide-co-glycolide) (P(LA-GA)) and dendrimer delivery systems may allow us to overcome these problems. The use of combination therapy of AODNs and cytotoxic agents such as 5-fluorouracil (5-FU) in biodegradable polymeric formulations may further improve therapeutic efficacy. AODN and 5-FU were either co-entrapped in a single microsphere formulation or individually entrapped in two separate microsphere formulations (double emulsion method) and release profiles determined in vitro. The release rates (biphasic) of the two agents were significantly slower when co-entrapped as a single microsphere formulation compared to those obtained with the separate formulations. Sustained release over 35 days was observed in both types of formulation. Naked and microsphere-loaded AODN and 5-FU (in separate formulations) were tested on an A431 vulval carcinoma cell line. Combining naked or encapsulated drugs produced a greater reduction in viable cell number as compared with either agent alone. However, controls and Western blotting indicated that non-sequence specific cytotoxic effects were responsible for the differences in viable cell number. The uptake properties of an anionic dendrimer based on a pentaerythritol structure covalently linked to AODNs (targeting the EGFR) have been characterised. The cellular uptake of AODN linked to the dendrimer was up to 3.5-fold higher in A431 cells as compared to naked AODN. Mechanistic studies suggested that receptor-mediated and adsorptive (binding protein-mediated) endocytosis were the predominant uptake mechanisms for the dendrimer-AODN. RNase H cleavage assay suggested that the dendrimer-AODN was able to bind and cleave the target site. A reduction of 20%, 28% and 45% in EGFR expression was observed with 0.05μM, 0.1μM and 0.5μM dendrimer-AODN treatments respectively with a reduction in viable cell number. These results indicated that the dendrimer delivery system may reduce viable cell number by an antisense specific mechanism.
Resumo:
The increasing prevalence of breast cancer (BC) in different parts of the world, particularly in the UK, highlights the importance of research into the aetiology and pathology of the disease. BC is the most common malignancy affecting women worldwide. Aquaporins (AQPs) are membrane protein channels that regulate cellular water flow. Recently, studies have demonstrated that expression of AQP3 is up-regulated in cancerous breast tissue. The present study examines the role of AQP3 in BC cell biology. Examination of clinical cases of BC showed higher AQP3 gene and protein expression in cancer tissues compared to healthy border tissues. In distinct clinicopathological groups however there were no differences observed with regards to AQP3 expression, suggesting that AQP3 expression may not be a predictor of lymph node infiltration or tumour grade. shRNA technology was used to knockdown gene expression of AQP3 in the invasive MDA-MB-231 BC cellular model. Cellular proliferation, migration, invasion, adhesion and response to the 5- fluorouracil (5-FU) based chemotherapy treatment were investigated in parental and knockdown cell line. AQP3 knockdown cells showed reduction in cellular proliferation, migration, invasion and increase in cell sensitivity to 5-FU compared with wild type (WT) or scrambled control (SC) cells. The effects of AQP3 knockdown on cellular glycolytic ability and ATP cellular content were quantified. Indirect glucose uptake was also measured by quantifying reconditioned media. AQP3 knockdown cells showed significantly lower levels of glucose uptake as compared to WT or SC. However there was no difference in the glycolytic ability and ATP content of the cells suggesting AQP3 has no role in cancer cell energetics. These data collectively suggest AQP3 expression is associated with the BC disease clinically and plays a role in multiple important aspects of BC pathophysiology, thus AQP3 represents a novel target for therapeutic intervention.
Resumo:
Most of the gemcitabine (dFdC) resistant cell lines manifested high NF?B activity. The NF?B activity can be induced by dFdC and 5-FU exposure. The chemosensitizing effect of disulfiram (DS), an anti-alcoholism drug and NF?B inhibitor, and copper (Cu) on the chemoresistant cell lines was examined. The DS/Cu complex significantly enhanced the cytotoxicity of dFdC (resistant cells: 12.2–1085-fold) and completely reversed the dFdC resistance in the resitant cell lines. The dFdC-induced NF?B activity was markedly inhibited by DS/Cu complex. The data from this study indicated that DS may be used in clinic to improve the therapeutic effect of dFdC in breast and colon cancer patients.
Resumo:
Disulfiram (DS), an anti-alcoholism drug, shows very strong cytotoxicity in many cancer types. However its clinical application in cancer treatment is limited by the very short half-life in the bloodstream. In this study, we developed a poly lactic-co-glycolic acid (PLGA)-encapsulated DS protecting DS from the degradation in the bloodstream. The newly developed DS-PLGA was characterized. The DS-PLGA has very satisfactory encapsulation efficiency, drug-loading content and controlled release rate in vitro. PLGA encapsulation extended the half-life of DS from shorter than 2 minutes to 7 hours in serum. In combination with copper, DS-PLGA significantly inhibited the liver cancer stem cell population. CI-isobologram showed a remarkable synergistic cytotoxicity between DS-PLGA and 5-FU or Sorafenib. It also demonstrated very promising anticancer efficacy and antimetastatic effect in liver cancer mouse model. Both DS and PLGA are FDA approved products for clinical application. Our study may lead to repositioning of DS into liver cancer treatment.