5 resultados para 5-alpha reductase

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of human granulocytes in the promotion of procainamide (PA) toxicity in vitro has been studied and one of the agents responsible for DNA strand scission and cell death in human target cells has been characterized. Crude peripheral blood mononuclear cells (cPBMNs) isolated by density centrifugation, and the lymphocyte cell lines--CCRF-HSB2 and WIL-2NS--were exposed to PA, and DNA strand breaks were quantified by fluorescent analysis of DNA unwinding. Therapeutic plasma concentrations of PA (0-50 microM) caused dose-dependent cytotoxicity, determined by dye exclusion, and strand breaks in cPBMNs incubated for 3 and 1.5 hr at 37 degrees, respectively. Using 50 microM PA a five-fold increase in DNA strand breaks was observed after 1.5 hr, with significant induction of strand breaks also being observed for 10 and 25 microM concentrations. Toxicity was much reduced in lymphocyte cell lines (maximal killing = 3.0% at 50 microM PA compared with 13.2% in cPBMNs). A similar decrease in toxicity was observed where N-acetyl procainamide (NAPA) was substituted for PA (less than 50% of strand breaks at all concentrations). Further investigations showed that the presence of a contaminating granulocyte population in the cPBMN fraction was responsible for the induction of PA toxicity. Incubation of a highly enriched granulocyte population with PA for 1 hr prior to exposure to purified peripheral blood mononuclear cells (pPBMNs) led to the complete restoration of the toxic effects. The resulting cyto- and genotoxicity were not significantly different to levels observed in cPBMNs. Significantly, incubation of granulocytes with NAPA did not induce toxicity in target pPBMNs. Ultrafiltration of granulocyte supernatants led to the identification of two toxic fractions of < 3000 and > 30,000 Da. Temporal studies showed that the toxicity associated with the < 3000 Da fraction appeared during the first 10-15 min incubation with PA whereas the > 30,000 Da fraction did not display significant toxicity until the 40-60 min period. Further assessment of the nature of these agents indicated that the 30,000 Da fraction was a protein. SDS-PAGE analysis showed an inducible 17,800 Da species appearing in granulocyte supernatants after 40 min incubation with PA. Dot blot analysis indicated that tumour necrosis factor alpha (TNF alpha) was present in the > 30,000 Da fraction. Evidence that TNF alpha was the high-molecular weight species responsible for PA-induced toxicity was obtained from neutralization assays employing an anti-TNF alpha antibody.(ABSTRACT TRUNCATED AT 400 WORDS)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma α-tocopherol (AT) concentrations are inversely related to cardiovascular (CV) risk; however, intervention studies with AT have failed to show any consistent benefit against CV disease (CVD). Proteomics offers the opportunity to examine novel effects of AT supplementation on protein expression and therefore improve our understanding of the physiological roles of AT. Thus, to investigate the effects of AT supplementation on the plasma proteome of healthy subjects we have undertaken a double-blind, randomised, parallel design supplementation study in which healthy subjects (n = 32; 11 male and 21 female) consumed AT supplements (134 or 268 mg/day) or placebo capsules for up to 28 days. Plasma samples were obtained before supplementation and after 14 and 28 days of supplementation for analysis of changes in the plasma proteome using 2-DE and MALDI-MS. Using semiquantitative proteomics, we observed that proapolipoprotein A1 (identified by MS and Western blotting) was altered at least two-fold. Using quantitative ELISA techniques, we confirmed a significant increase in plasma apolipoprotein A1 concentration following supplementation with AT which was both time and dose dependent (p < 0.01 after 28 days supplementation with 268 mg AT/day). These data demonstrate the time and dose sensitivity of the plasma proteome to AT supplementation. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plasma protein zinc-α2-glycoprotein (ZAG) has been shown to be identical with a lipid mobilizing factor capable of inducing loss of adipose tissue in cancer cachexia through an increased lipid mobilization and utilization. The ability of ZAG to induce uncoupling protein (UCP) expression has been determined using in vitro models of adipose tissue and skeletal muscle. ZAG induced a concentration-dependent increase in the expression of UCP-1 in primary cultures of brown, but not white, adipose tissue, and this effect was attenuated by the β3-adrenergic receptor (β3-AR) antagonist SR59230A. A 6.5-fold increase in UCP-1 expression was found in brown adipose tissue after incubation with 0.58 μM ZAG. ZAG also increased UCP-2 expression 3.5-fold in C2C12 murine myotubes, and this effect was also attenuated by SR59230A and potentiated by isobutylmethylxanthine, suggesting a cyclic AMP-mediated process through interaction with a β3-AR. ZAG also produced a dose-dependent increase in UCP-3 in murine myotubes with a 2.5-fold increase at 0.58 μM ZAG. This effect was not mediated through the β3-AR, but instead appeared to require mitogen activated protein kinase. These results confirm the ability of ZAG to directly influence UCP expression, which may play an important role in lipid utilization during cancer cachexia. © 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The morphology, chemical composition, and mechanical properties in the surface region of α-irradiated polytetrafluoroethylene (PTFE) have been examined and compared to unirradiated specimens. Samples were irradiated with 5.5 MeV 4He2+ ions from a tandem accelerator to doses between 1 × 106 and 5 × 1010 Rad. Static time-of-flight secondary ion mass spectrometry (ToF-SIMS), using a 20 keV C60+ source, was employed to probe chemical changes as a function of a dose. Chemical images and high resolution spectra were collected and analyzed to reveal the effects of a particle radiation on the chemical structure. Residual gas analysis (RGA) was utilized to monitor the evolution of volatile species during vacuum irradiation of the samples. Scanning electron microscopy (SEM) was used to observe the morphological variation of samples with increasing a particle dose, and nanoindentation was engaged to determine the hardness and elastic modulus as a function of a dose. The data show that PTFE nominally retains its innate chemical structure and morphology at a doses <109 Rad. At α doses ≥109 Rad the polymer matrix experiences increased chemical degradation and morphological roughening which are accompanied by increased hardness and declining elasticity. At  α doses >1010 Rad the polymer matrix suffers severe chemical degradation and material loss. Chemical degradation is observed in ToF-SIMS by detection of ions that are indicative of fragmentation, unsaturation, and functionalization of molecules in the PTFE matrix. The mass spectra also expose the subtle trends of crosslinking within the α-irradiated polymer matrix. ToF-SIMS images support the assertion that chemical degradation is the result of a particle irradiation and show morphological roughening of the sample with increased a dose. High resolution SEM images more clearly illustrate the morphological roughening and the mass loss that accompanies high doses of a particles. RGA confirms the supposition that the outcome of chemical degradation in the PTFE matrix with continuing irradiation is evolution of volatile species resulting in morphological roughening and mass loss. Finally, we reveal and discuss relationships between chemical structure and mechanical properties such as hardness and elastic modulus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To identify novel cell ageing markers in order to gain insight into ageing mechanisms, we adopted membrane enrichment and comparison of the CD4+ T cell membrane proteome (purified by cell surface labelling using Sulfo-NHS-SS-Biotin reagent) between healthy young (n=9, 20-25y) and older (n=10; 50-70y) male adults. Following two-dimensional gel electrophoresis (2DE) to separate pooled membrane proteins in triplicates, the identity of protein spots with age-dependent differences (p<0.05 and >1.4 fold difference) was determined using liquid chromatography-mass spectrometry (LC-MS/MS). Seventeen protein spot density differences (ten increased and seven decreased in the older adult group) were observed between young and older adults. From spot intensity analysis, CD4+ T cell surface α-enolase was decreased in expression by 1.5 fold in the older age group; this was verified by flow cytometry (n=22) and qPCR with significantly lower expression of cellular α-enolase mRNA and protein compared to young adult CD4+ T cells (p<0.05). In an independent age-matched case-control study, lower CD4+ T cell surface α-enolase expression was observed in age-matched patients with cardiovascular disease (p<0.05). An immune-modulatory role has been proposed for surface α-enolase and our findings of decreased expression suggest that deficits in surface α-enolase merit investigation in the context of immune dysfunction during ageing and vascular disease.