47 resultados para 5-HT1A RECEPTOR-BINDING
em Aston University Research Archive
Resumo:
Extracellular single-unit recordings in mouse brain slices were used to determine the effect of exogenously applied 5-HT on STN neurones. Recordings were made from 74 STN cells which fired action potentials at a regular rate of 7.19 ± 0.5 Hz. In 61 cells (82%), 5-HT application increased STN neurone firing rate (10 μM, 180 ± 16.8%, n = 35) with an estimated EC 50 of 5.4 μM. The non-specific 5-HT2 receptor agonist α-methyl 5-HT (1-10 μM) mimicked 5-HT induced excitations (15 cells). These excitations were significantly reduced by pre-perfusion with the specific 5-HT2C receptor antagonist RS102221 (500 nM, 9 cells) and the 5HT4 antagonist GR113808 (500 nM, 7 cells). In 6 cells (8%) 5-HT induced biphasic responses where excitation was followed by inhibition, while in 7 cells (9%) inhibition of firing rate was observed alone. Inhibitory responses were reduced by the 5-HT1A antagonist WAY100135 (1 μM, 4 cells). No inhibitory responses were observed following α-methyl 5-HT applications. Both the excitations and inhibitions were unaffected by picrotoxin (50 μM, n = 5) and CNQX (10 μM, n = 5) indicative of direct postsynaptic effects. Thus, in STN neurones, 5-HT elicits two distinct effects, at times on the same neurone, the first being an excitation which is mediated by 5-HT 2C and 5-HT4 receptors and the second an inhibition which is mediated by 5-HT1A receptors. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
In the ciliate Paramecium, a variety of well characterized processes are regulated by Ca2+, e.g. exocytosis, endocytosis and ciliary beat. Therefore, among protozoa, Paramecium is considered a model organism for Ca2+ signaling, although the molecular identity of the channels responsible for the Ca2+ signals remains largely unknown. We have cloned - for the first time in a protozoan - the full sequence of the gene encoding a putative inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3) receptor from Paramecium tetraurelia cells showing molecular characteristics of higher eukaryotic cells. The homologously expressed Ins(1,4,5)P3-binding domain binds [3H]Ins(1,4,5)P3, whereas antibodies unexpectedly localize this protein to the osmoregulatory system. The level of Ins(1,4,5)P3-receptor expression was reduced, as shown on a transcriptional level and by immuno-staining, by decreasing the concentration of extracellular Ca2+ (Paramecium cells rapidly adjust their Ca2+ level to that in the outside medium). Fluorochromes reveal spontaneous fluctuations in cytosolic Ca2+ levels along the osmoregulatory system and these signals change upon activation of caged Ins(1,4,5)P3. Considering the ongoing expulsion of substantial amounts of Ca2+ by the osmoregulatory system, we propose here that Ins(1,4,5)P3 receptors serve a new function, i.e. a latent, graded reflux of Ca2+ to fine-tune [Ca2+] homeostasis.
Resumo:
CGRP receptor binding may be measured using homogenates of cell membranes or intact cells. Here a microcentrifugation-based assay is described that utilizes radioiodinated CGRP in displacement studies to determine the binding parameters for any ligand that interacts with CGRP receptors. A similar assay is described for binding to cultured cells. The protocols may be adapted for other radioligands or for filtration-based assays. The main problems with CGRP binding assays can usually be traced to degradation of the radioligand or displacing ligands. Also, some cell lines fail to express CGRP receptors after extensive passage. CGRP binding assays provide a rapid and easy approach for distinguishing between receptors for CGRP and related peptides such as adrenomedullin and amylin.
Resumo:
The hormone glucagon-like peptide-1(7-36)amide (GLP-1) is released in response to ingested nutrients and acts to promote glucose-dependent insulin secretion ensuring efficient postprandial glucose homeostasis. Unfortunately, the beneficial actions of GLP-1 which give this hormone many of the desirable properties of an antidiabetic drug are short lived due to degradation by dipeptidylpeptidase IV (DPP IV) and rapid clearance by renal filtration. In this study we have attempted to extend GLP-1 action through the attachment of palmitoyl moieties to the E-amino group in the side chain of the LyS26 residue and to combine this modification with substitutions of the Ala 8 residue, namely Val or amino-butyric acid (Abu). In contrast to native GLP-1, which was rapidly degraded, [Lys(pal) 26]GLP-1, [Abu8,Lys(pal)26]GLP-1 and [Val8,Lys-(pal)26]GLP-1 all exhibited profound stability during 12 h incubations with DPP IV and human plasma. Receptor binding affinity and the ability to increase cyclic AMP in the clonal β-cell line BRIN-BD11 were decreased by 86- to 167-fold and 15- to 62-fold, respectively compared with native GLP-1. However, insulin secretory potency tested using BRIN-BD11 cells was similar, or in the case of [Val8,Lys(pal)26]GLP-1 enhanced. Furthermore, when administered in vivo together with glucose to diabetic (ob/ob) mice, [Lys(pal)26]GLP-1, [Abu8,Lys(pal) 26]GLP-1 and [Val8,Lys(pal) 26]GLP-1 did not demonstrate acute glucose-lowering or insulinotropic activity as observed with native GLP-1. These studies support the potential usefulness of fatty acid linked analogues of GLP-1 but indicate the importance of chain length for peptide kinetics and bioavailability. Copyright © by Walter de Gruyter.
Resumo:
The study of tic-like movements in mice has demonstrated close parallels both in characteristics and in pharmacology with the tics which occur in TS. Head-shakes and/or other tic-like behaviours occurring spontaneously or induced by the selective 5-HT2/1C agonist DOI, alpha-melanocyte stimulating hormone, adrenocorticotrophic hormone (1-39), thyrotropin releasing hormone, or RX336-M were blocked when tested with neuroleptics such as haloperidol and/or the alpha-2 adrenoceptor agonist clonidine. The selective dopamine D1 antagonists SCH23390 and SCH39166 dose-dependently blocked spontaneous and DOI head-shakes but the selective dopamine D2 antagonists sulpiride and raclopride were ineffective. The 5-HT1A receptor agonists 8-OH-DPAT, ipsapirone, gepirone, MDL 73005EF and buspirone (i.p) dose-dependently blocked DOI head-shakes, pindolol blocked the inhibitory effect of 8-OH-DPAT on DOI head-shakes. Parachlorophenylalanine blocked the inhibitory effect of 8-OH-DPAT and buspirone, suggesting that the 5-HT1A receptor involved is located presynaptically. The alpha-2 adrenoceptor antagonists yohimbine, idazoxan, 1-PP and RX811059 prevented the inhibitory effect of 8-OH-DPAT on DOI head-shakes suggesting that this 5-HT1A - 5-HT2 receptor interaction is under the modulatory control of adrenoceptors. Because kynurenine has previously been found to potentiate head-shaking, plasma kynurenine concentrations were measured in seven TS patients and were significantly higher than controls, but neopterin and biopterin were unchanged. The relationship between tic-like movements in rodents and their implications for understanding the aetiology and treatment of TS is discussed.
Resumo:
Background and purpose - The N-terminus of calcitonin gene-related peptide (CGRP) is important for receptor activation, especially the disulphide-bonded ring (residues 1-7). However, the roles of individual amino acids within this region have not been examined and so the molecular determinants of agonism are unknown. This study has examined the role of residues 1, 3-6 and 8-9, excluding Cys-2 and Cys-7. Experimental approach - CGRP derivatives were substituted with either cysteine or alanine; further residues were introduced at position 6. Their affinity was measured by radioligand binding and their efficacy by measuring cAMP production in SK-N-MC cells and ß-arrestin 2 translocation in CHO-K1 cells at the CGRP receptor. Key results - Substitution of Ala-5 by cysteine reduced affinity 270-fold and reduced efficacy for production of cAMP in SK-N-MCs. Potency at ß-arrestin translocation was reduced by 9-fold. Substitution of Thr-6 by cysteine destroyed all measurable efficacy of both cAMP and ß-arrestin responses; substitution with either alanine or serine impaired potency. Substitutions at positions 1, 4, 8 and 9 resulted in approximately 10-fold reductions in potency at both responses. Similar observations were made at a second CGRP-activated receptor, the AMY1(a) receptor. Conclusions and implications - Ala-5 and Thr-6 are key determinants of agonist activity for CGRP. Ala-5 is also very important for receptor binding. Residues outside of the 1-7 ring also contribute to agonist activity.
Resumo:
A novel synthetic approach towards N1-alkylated 3-propyl-1,4-benzodiazepines was developed in five synthetic steps from 2-amino-4-chlorobenzophenone, in which the N-oxide 4 served as a key intermediate. The structure-activity relationship optimization of this 3-prophyl-1,4-benzodiazepine template was carried out on the N1-position by selective alkylation reactions and resulted in a ligand with an improved affinity on the cholecystokinin (CCK2) receptor. The N-allyl-3-propyl-benzodiazepine 6d displayed an affinity towards the CCK2 (CCK-B) receptor of 170 nM in a radiolabelled receptor-binding assay. The anxiolytic activity of this allyl-3-propyl-1,4-benzodiazepine 6d was subsequently determined in in-vivo psychotropic assays. This novel ligand had ED50 values of 4.7 and 5.2 mg kg-1 in the black and white box test and the x-maze, respectively, and no significant sedation/muscle relaxation was observed.
Resumo:
Endogenous glucocorticoids and serotonin have been implicated in the pathophysiology of depression, anxiety and schizophrenia. This thesis investigates the potential of downregulating expression of central Type II glucocorticoid receptors (GR) both in vitro and in vivo, with empirically-designed antisense oligodeoxynucleotides (ODN), to characterise GR modulation of 5-HT2A receptor expression using quantitative RT-PCR, Western blot analysis and radioligand binding. The functional consequence of GR downregulation is also determined by measuring 1-(2,5-dimethoxy 4-iodophenyl)-2-amino propane hydrochloride (DOI) mediated 5-HT2A receptor specific headshakes. Using a library of random antisense ODN probes, RNAse H accessibility mapping of T7-primed, in vitro transcribed GR mRNA revealed several potential cleavage sites and identified an optimally effect GR antisense ODN sequence of 21-mer length (GRAS5). In vitro efficacy studies using rat C6 glioma cells showed a 56% downregulation in GR mRNA levels and 80% downregulation in GR protein levels. In the same cells a 29% upregulation in 5-HT2A mRNA levels and 32% upregulation in 5-HT2A protein levels was revealed. This confirmed the optimal nature of the GRAS5 sequence to produce marked inhibition of GR gene expression, and also revealed GR modulation of the 50-HT2A receptor subtype in C6 glioma cells to be a tonic repression of receptor expression. The distribution of a fluorescently-labelled GRAS5 ODN was detected in diverse areas of the rat brain after single ICV administration, although this fluorescence signal was not sustained over a period of 5 days. However, fluorescently-labelled GRAS5 ODN, when formulated in polymer microspheres, showed diverse distribution in the brain which was maintained for 5 days following a single ICV administration. This produced no apparent neurotoxic effects on rat behaviour and hypothalamic-pituitary-adrenal (HPA) axis homeostasis. Furthermore, a single polymer microsphere injection ICV proved to be an effective means of delivering antisense ODNs and this was adopted for the in vivo efficacy studies. In vivo characterisation of GRAS5 revealed marked downregulation of GR mRNA in rat brain regions such as the frontal cortex (26%), hippocampus (35%), and hypothalamus (39%). Downregulation of GR protein was also revealed in frontal cortex (67%), hippocampus (76%), and hypothalamus (80%). In the same animals upregulation of 5-HT2A mRNA levels was shown in frontal cortex (13%), hippocampus (7%), and hypothalamus (5%) while upregulation in 5-HT2A protein levels was shown in frontal cortex (21 %). This upregulation in 5-HT2A receptor density as a result of antisense-mediated inhibition of GR was further confirmed by a 55% increase in DOl-mediated 5-HT2A receptor specific headshakes. These results demonstrate that GR is involved in tonic inhibitory regulation of 5-HT2A receptor expression and function in vivo, thus providing the potential to control 5-HT2A-linked disorders through corticosteroid manipulation. These experiments have therefore established an antisense approach which can be used to investigate pharmacological characteristics of receptors.
Resumo:
The modulation of 5-hydroxytryptamine (5-HT)-related head-twitchbehaviour by antimigraine drugs and migraine triggers was examined inmice. The antimigraine drugs examined produced either inhibition or noeffect on 5-HT-related head-twitching. On the basis of these resultsit is suggested that 5-HT-related head-twitching is unlikely to beuseful in the preclinical screening and discovery of systemically-activeantimigraine agents. The migraine triggers examined, tyramineand beta-PEA initially produced a repeatable complex time-relatedeffect on 5-HT-related head-twitching, with both inhibition andpotentiation of this behaviour being observed, however, when furtherexamination of the effect of the migraine triggers on 5-HT-relatedhead-twitching was attempted some time later the effects seeninitially were no longer produced. The effect of (±)-1-<2, 5-dimethoxy-4-iodophenyl)-2-aminopropane,((±)DOl), on on-going behaviour of mice and rats was examined. Shakingbehaviour was observed in both species. In mice, excessive scratchingbehaviour was also present. (±)DOl-induced scratching and shakingbehaviour were found to be differentially modulated by noradrenergicand serotonergic agents, however, the fact that both behaviours wereblocked by ritanserin (5-HT2/5-HT1c receptor antagonist) and inhibitedby FLA-63 (a dopamine-beta-oxidase inhibitor which depletesnoradrenaline), suggests the pathways mediating these behaviours mustbe convergent in some manner, and that both behaviours require intact5-HT receptors, probably 5-HT2 receptors, for their production. Ingeneral, the behavioural profile of (±)DOI was as expected for anagent which exhibits high affinity binding to 5-HT2/5-HT1c receptors.Little sign of the 5-HTl-related '5-HT syndrome' was seen in eithermice or rats. The effect of a variety of noradrenergic agents on head-twitchinginduced by a variety of shake-inducing agents was examined. A patternof modulatory effect was seen whereby the modulatory effect of thenoradrenergic agents on 5-hydroxytryptophan <5-HTP) (and in some cases, 5-methoxy-N,N-dimethyltryptamine (5-MeODMT)) was found to be the opposite of that observed with quipazine and (±)DOI. The relationship between these effects, and their implications for understanding the pharmacology of centrally acting drugs is discussed.
Resumo:
The 5-HT7 receptor is linked with various CNS disorders. Using an automated solution phase synthesis a combinatorial library of 384 N-substituted N-[1-methyl-3-(4-methylpiperidin-1-yl)propyl]-arylsulfonamides was prepared with 24 chemically diverse amines 1-24 and 16 sulfonyl chlorides A-P. The chemical library of alkylated sulfonamides was evaluated in a receptor binding assay with [3]H-5-CT as ligand. The key synthetic step was the alkylation of a sulfonamide with iodide E, which was prepared from butanediol in 4 synthetic steps. The target compounds 1A, 1B .....24A ... 24P were purified by solvent extraction on a Teacan liquid handling system. Sulfonamide J20, B23, D23, G23, G23, J23 , I24 and O24 displayed a binding affinity IC50 between 100 nM and 10 nM. The crystalline J20 (IC50=39 nM) and O24 (IC50=83 nM) were evaluated further in the despair swimming test and the tail suspension assay. A significant antidepressant activity was found in mice of a greater magnitude than imipramine and fluoxetine at low doses. © 2006 Bentham Science Publishers Ltd.
Resumo:
Kynurenine (KYN) is the first stable metabolite of the kynurenine pathway, which accounts for over 95% of tryptophan metabolism. Two previous studies by this research group reported elevated plasma KYN in Tourette syndrome (TS) patients when compared with age and sex matched controls and another study showed that KYN potentiated 5-HT2A-mediated head-shakes (HS) in rodents. These movements have been suggested to model tics in TS. This raised the questions how KYN acts in eliciting this response and whether it is an action of its own or of a further metabolite along the kynurenine pathway. In the liver, where most of the kynurenine pathway metabolism takes place under physiological conditions, the first and the rate limiting enzyme is tryptophan-dioxygenase (TDO) which can be induced by cortisol. In extrahepatic tissues the same step of the pathway is catalyzed by indoleamine-dioxygenase (IDO), which is induced by cytokines, predominantly interferon-y (INF-y). Plasma neopterin, which shows parallel increase with KYN following immune stimulation, was also found elevated in one of these studies positively correlating with KYN. In the present work animal studies suggested that KYN potentiates and quinolinic acid (QUINA) dose dependently inhibits the 5-HT2A-mediated HS response in mice. The potentiating effect seen with KYN was suggested to be an effect of KYN itself. Radioligand binding and phosphoinositide (PI) hydrolysis studies were done to explore the mechanisms by which kynurenine pathway metabolites could alter a 5-HT2A-receptor mediated response. None of the kynurenine pathway metabolites tested showed direct binding to 5-HT2A-receptors. PI hydrolysis studies with KYN and QUINA showed that KYN did not have any effect while QUINA inhibited 5-HT2A-mediated PI hydrolysis. Plasma cortisol determination in TS patients with elevated plasma KYN did not show elevated plasma cortisol levels, suggesting that the increase of plasma KYN in these TS patients is unlikely to be due to an increased TDO activity induced by increased cortisol. Attention deficit hyperactivity disorder (ADHD) is commonly associated with TS. Salivary cortisol detected in a group of children primarily affected with ADHD showed significantly lower salivary cortisol levels when compared with age and sex matched controls. Plasma tryptophan, KYN, neopterin, INF-y and KYN/tryptophan ratio and night-time urinary 6-sulphatoxymelatonin (aMT6s) excretion measured in a group of TS patients did not show any difference in their levels when compared with age and sex matched controls, but TS patients failed to show the expected positive correlation seen between plasma INF-y, neopterin and KYN and the negative correlation seen between plasma KYN and night-time urinary aMT6s excretion seen in healthy controls. The relevance of the kynurenine pathway, melatonin secretion and cortisol to Tourette Syndrome and associated conditions and the mechanism by which KYN and QUINA alter the 5-HT2A-receptor mediated HS response are discussed.
Resumo:
Tic-like movements in rodents bear close similarities to those observed in humans both pharmacologically and morphologically. Pharmacologically, tics are modulated by serotonergic and dopaminergic systems and abnormalities of these systems have been reported in Tourette's Syndrome (TS). Therefore, serotonergic and dopaminergic modulation of tics induced by a thyrotrophin-releasing hormone (TRH) analogue were studied as possible models for TS. The TRH analogue MK771 induced a variety of tic like movements in mice; blinking fore-paw-licking and fore-paw-tremor were quantified and serotonergic and dopaminergic modulation was investigated. The selective dopamine D1 receptor antagonists SCH23390 and SCH39166 and dopamine D2 antagonists raclopride and sulpiride had no effect on MK771 induced blinking. The D1 antagonists attenuated fore-paw-tremor and -licking while the D2 antagonists were generally without effect on these behaviours. Ketanserin (5-HT2A/ alpha-1 antagonist) and ritanserin (5-HT2A/2C antagonist) were able to attenuate MK771-induced blinking and ketanserin, mianserin (5-HT2A/2C antagonist) and prazosin (alpha-1 adrenoceptor antagonist) were able to attenuate MK771-induced fore-paw-tremor and -licking. The 5-HT2C/2B antagonist SB200646A was without effect on blinking and fore-paw-licking but dose-dependently potentiated fore-paw-tremor. The 5-HT1A agonists 8-OH DPAT and buspirone attenuated blinking at the lower doses tested but were ineffective at the higher doses; the converse was found for fore-paw-licking and -tremor behaviours.The effects of these ligands appeared to be at a postsynaptic 5-HTlA site since para-chlorophenylalanine was without effect on the manipulation of these behaviours. (S)-W A Y100135 was without effect on MK771-induced behaviours, spontaneous and DOl-induced head shakes. Because kynurenine potentiates head shakes and plasma concentrations are raised in TS patients the effects of kynurenine on the 5-HT2A/2C agonist DOl mediated head shake were established. Kynurenine potentiated the DOl head shake. Attempts were made to correlate serotonergic unit activity with tic like behaviour in cats but this proved unsuccessful. However, the pharmacological understanding of 5-HTlA receptor function has been hampered because of the lack of selective antagonists for this site. For this reason the effects of the novel 5-HTlA antagonists (S)-WA Y- 100135 and WAY -100635 were tested on 5-HT single-unit activity recorded from the dorsal-raphe-nucleus in the behaving cat. Both drugs antagonised the suppression of unit activity caused by 8-0H DPAT. (S)-WA Y-100135 reduced unit activity whereas WAY-100635 increased it. This suggests that WAY-100635 is acting as an antagonist at the 5-HTlA somatodendritic autoreceptor and that (S)W A Y -100135 acts as a partial agonist at this site. Aspects of tic like behaviour and serotonergic control are discussed.
Resumo:
Drugs acting at 5-HT receptors were evaluated on three animal models of anxiety. On the elevated X-maze test the majority of 5-HT1 agonists were found to be anxiogenic. However, ipsapirone was anxiolytic and buspirone and gepirone were inactive. The 5-HT2 agonist DOI and the 5-HT2 antagonist ritanserin were anxiolytic while ICI 169,369, a 5-HT2 antagonist was inactive. All 5-HT3 antagonists tested were inactive in this test, while the indirect serotomimetics zimeldine and fenfluramine were anxiogenic. Neither beta-adrenoceptor agonists nor antagonists had reproducible effects on anxiety in this model. Combined beta-1/beta-2 adrenoceptor antagonists reversed the anxiogenic effects of 8-OH-DPAT while selective beta-1 or beta-2 antagonists did not. On the social interaction model the 5-HT1 agonists 8-OH-DPAT, RU 24969 and 5-MeODMT were anxiogenic and ipsapirone was anxiolytic. The 5-HT2 agonist DOI and the beta-adrenoceptor- and 5-HT- antagonist pindolol were anxiolytic, while the 5-HT2 and 5-HT3 antagonists were inactive. In the marble burying test, the 5-HT upake inhibitors zimeldine, fluvoxamine, indalpine and citalopram, the 5-HT1B/5-HT1C agonists mCPP and TFMPP and the 5-HT2/5-HT1C agonist DOI reduced marble burying without affecting locomotor activity. 5-HT1A agonists and the 5-HT2 and 5-HT3 antagonists were without effect. Lesions of the dorsal raphe nucleus reversed the anxiogenic effects of 8-OH-DPAT in the X-maze model. The implication of these results for the understanding of the pharmacology of 5-HT in anxiety is discussed.