4 resultados para 5-40

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the visual mechanisms that encode edge blur in images. Our previous work suggested that the visual system spatially differentiates the luminance profile twice to create the `signature' of the edge, and then evaluates the spatial scale of this signature profile by applying Gaussian derivative templates of different sizes. The scale of the best-fitting template indicates the blur of the edge. In blur-matching experiments, a staircase procedure was used to adjust the blur of a comparison edge (40% contrast, 0.3 s duration) until it appeared to match the blur of test edges at different contrasts (5% - 40%) and blurs (6 - 32 min of arc). Results showed that lower-contrast edges looked progressively sharper. We also added a linear luminance gradient to blurred test edges. When the added gradient was of opposite polarity to the edge gradient, it made the edge look progressively sharper. Both effects can be explained quantitatively by the action of a half-wave rectifying nonlinearity that sits between the first and second (linear) differentiating stages. This rectifier was introduced to account for a range of other effects on perceived blur (Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54), but it readily predicts the influence of the negative ramp. The effect of contrast arises because the rectifier has a threshold: it not only suppresses negative values but also small positive values. At low contrasts, more of the gradient profile falls below threshold and its effective spatial scale shrinks in size, leading to perceived sharpening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the visual mechanisms that encode edge blur in images. Our previous work suggested that the visual system spatially differentiates the luminance profile twice to create the 'signature' of the edge, and then evaluates the spatial scale of this signature profile by applying Gaussian derivative templates of different sizes. The scale of the best-fitting template indicates the blur of the edge. In blur-matching experiments, a staircase procedure was used to adjust the blur of a comparison edge (40% contrast, 0.3 s duration) until it appeared to match the blur of test edges at different contrasts (5% - 40%) and blurs (6 - 32 min of arc). Results showed that lower-contrast edges looked progressively sharper.We also added a linear luminance gradient to blurred test edges. When the added gradient was of opposite polarity to the edge gradient, it made the edge look progressively sharper. Both effects can be explained quantitatively by the action of a half-wave rectifying nonlinearity that sits between the first and second (linear) differentiating stages. This rectifier was introduced to account for a range of other effects on perceived blur (Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54), but it readily predicts the influence of the negative ramp. The effect of contrast arises because the rectifier has a threshold: it not only suppresses negative values but also small positive values. At low contrasts, more of the gradient profile falls below threshold and its effective spatial scale shrinks in size, leading to perceived sharpening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Light curable dimethacrylate resin composites undergo free radical photopolymerisation in response to blue light (wavelength 450-500 nm) and may offer superior handling and setting characteristics for novel hard tissue repair materials. The current investigation aims to determine the optimum formulation of bisphenol-A glycidyl methacrylate and triethyleneglycoldimethacrylate (bisGMA/TEGDMA) or urethane dimethacrylate (UDMA)/TEGDMA resin mixtures and the effect of Bioglass incorporation on the rate of polymerisation (RP), degree of conversion (DC) and flexural strength (FS) of light-curable filled resin composites (FRCs). Experimental photoactive resins containing a range of bisGMA, UDMA and TEGDMA ratios and/or filled with non-silanised irregular or spherical 45S5-Bioglass (50 μm; 5-40 wt%) and/or silanised silicate glass filler particulates (0.7 μm; 50-70 wt%) were tested. RP and DC were analysed in real-time using nearinfrared spectroscopy. FS of resins and FRCs were determined using three-point flexural strength tests. UDMA/TEGDMA resins exhibited increased DC compared with bisGMA/TEGDMA resins (p<0.05). The addition of spherical particles of Bioglass had a detrimental effect on the FS (p>0.05), whereas they increased DC of UDMA/TEGDMA resins (p<0.05). Addition of irregular shaped Bioglass particles increased the FS of UDMA/TEGDMA resins up to 20 wt% Bioglass (p<0.05). The flexibility and strength conferred by the urethane group in UDMA may result in enhanced physical and mechanical properties compared with conventional resins containing bulky (bisGMA) molecules. Addition of 45S5-Bioglass with specific filler content, size and morphology resulted in enhanced mechanical and physical properties of UDMA/TEGDMA composites. © (2014) Trans Tech Publications, Switzerland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis describes the design and development of an eye alignment/tracking system which allows self alignment of the eye’s optical axis with a measurement axis. Eye alignment is an area of research largely over-looked, yet it is a fundamental requirement in the acquisition of clinical data from the eye. New trends in the ophthalmic market, desiring portable hand-held apparatus, and the application of ophthalmic measurements in areas other than vision care have brought eye alignment under new scrutiny. Ophthalmic measurements taken in hand-held devices with out an clinician present requires alignment in an entirely new set of circumstances, requiring a novel solution. In order to solve this problem, the research has drawn upon eye tracking technology to monitor the eye, and a principle of self alignment to perform alignment correction. A handheld device naturally lends itself to the patient performing alignment, thus a technique has been designed to communicate raw eye tracking data to the user in a manner which allows the user to make the necessary corrections. The proposed technique is a novel methodology in which misalignment to the eye’s optical axis can be quantified, corrected and evaluated. The technique uses Purkinje Image tracking to monitor the eye’s movement as well as the orientation of the optical axis. The use of two sets of Purkinje Images allows quantification of the eye’s physical parameters needed for accurate Purkinje Image tracking, negating the need for prior anatomical data. An instrument employing the methodology was subsequently prototyped and validated, allowing a sample group to achieve self alignment of their optical axis with an imaging axis within 16.5-40.8 s, and with a rotational precision of 0.03-0.043°(95% confidence intervals). By encompassing all these factors the technique facilitates self alignment from an unaligned position on the visual axis to an aligned position on the optical axis. The consequence of this is that ophthalmic measurements, specifically pachymetric measurements, can be made in the absence of an optician, allowing the use of ophthalmic instrumentation and measurements in health professions other than vision care.