11 resultados para 4D Dosimetry
em Aston University Research Archive
Resumo:
We have studied Co60 gamma-irradiation effect on the characteristics of Type IA fiber Bragg gratings. A record Bragg peak shift of 190 pm was observed for a grating written in Fibercore PS-1250/1500 photosensitive fiber at a radiation dose of 116 kGy. Type IA and Type I gratings show different kinetics under radiation and during post-radiation annealing, which can be used for the design of a grating based dosimetry system.
Resumo:
We have studied Co60 ionizing radiation effect on the characteristics of Type IA fiber Bragg gratings. A record Bragg peak shift of 190 pm was observed for a grating written in Fibercore PS-1250/1500 photosensitive fiber at a radiation dose of 116 kGy. Type IA and Type I gratings show different kinetics under radiation and during post-radiation annealing, which can be used for the design of a grating based dosimetry system.
Resumo:
We have studied Co60 gamma-irradiation effect on the characteristics of Type IA fiber Bragg gratings. A record Bragg peak shift of 190 pm was observed for a grating written in Fibercore PS-1250/1500 photosensitive fiber at a radiation dose of 116 kGy. Type IA and Type I gratings show different kinetics under radiation and during post-radiation annealing, which can be used for the design of a grating based dosimetry system.
Resumo:
We have studied Co60 ionizing radiation effect on the characteristics of Type IA fiber Bragg gratings. A record Bragg peak shift of 190 pm was observed for a grating written in Fibercore PS-1250/1500 photosensitive fiber at a radiation dose of 116 kGy. Type IA and Type I gratings show different kinetics under radiation and during post-radiation annealing, which can be used for the design of a grating based dosimetry system.
Resumo:
Proteins are susceptible to oxidation by reactive oxygen species, where the type of damage induced is characteristic of the denaturing species. The induction of protein carbonyls is a widely applied biomarker, arising from primary oxidative insult. However, when applied to complex biological and pathological conditions it can be subject to interference from lipid, carbohydrate and DNA oxidation products. More recently, interest has focused on the analysis of specific protein bound oxidised amino acids. Of the 22 amino acids, aromatic and sulphydryl containing residues have been regarded as being particularly susceptible to oxidative modification, with L-DOPA from tyrosine, ortho-tyrosine from phenylalanine; sulphoxides and disulphides from methionine and cysteine respectively; and kynurenines from tryptophan. Latterly, the identification of valine and leucine hydroxides, reduced from hydroperoxide intermediates, has been described and applied. In order to examine the nature of oxidative damage and protective efficacy of antioxidants the markers must be thoroughly evaluated for dosimetry in vitro following damage by specific radical species. Antioxidant protection against formation of the biomarker should be demonstrated in vitro. Quantification of biomarkers in proteins from normal subjects should be within the limits of detection of any analytical procedure. Further to this, the techniques for isolation and hydrolysis of specific proteins should demonstrate that in vitro oxidation is minimised. There is a need for the development of standards for quality assurance material to standardise procedures between laboratories. At present, antioxidant effects on protein oxidation in vivo are limited to animal studies, where dietary antioxidants have been reported to reduce dityrosine formation during rat exercise training. Two studies on humans have been reported last year. The further application of these methods to human studies is indicated, where the quality of the determinations will be enhanced through inter-laboratory validation.
Resumo:
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.
Resumo:
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.
Resumo:
Ultraviolet (UV) radiation potentially damages the skin, the immune system, and structures of the eye. A useful UV sun protection for the skin has been established. Since a remarkable body of evidence shows an association between UV radiation and damage to structures of the eye, eye protection is important, but a reliable and practical tool to assess and compare the UV-protective properties of lenses has been lacking. Among the general lay public, misconceptions on eye-sun protection have been identified. For example, sun protection is mainly ascribed to sunglasses, but less so to clear lenses. Skin malignancies in the periorbital region are frequent, but usual topical skin protection does not include the lids. Recent research utilized exact dosimetry and demonstrated relevant differences in UV burden to the eye and skin at a given ambient irradiation. Chronic UV effects on the cornea and lens are cumulative, so effective UV protection of the eyes is important for all age groups and should be used systematically. Protection of children's eyes is especially important, because UV transmittance is higher at a very young age, allowing higher levels of UV radiation to reach the crystalline lens and even the retina. Sunglasses as well as clear lenses (plano and prescription) effectively reduce transmittance of UV radiation. However, an important share of the UV burden to the eye is explained by back reflection of radiation from lenses to the eye. UV radiation incident from an angle of 135°-150° behind a lens wearer is reflected from the back side of lenses. The usual antireflective coatings considerably increase reflection of UV radiation. To provide reliable labeling of the protective potential of lenses, an eye-sun protection factor (E-SPF®) has been developed. It integrates UV transmission as well as UV reflectance of lenses. The E-SPF® compares well with established skin-sun protection factors and provides clear messages to eye health care providers and to lay consumers. © 2014 Behar-Cohen et al, This work is published by Dove Medical Press Ltd.
Resumo:
The structure-activity relationship optimization of the pyrazoline template 3a resulted in novel 3-oxo-1,2-diphenyl-2,3-dihydro-1H-pyrazol-4-yl)-indole carboxamides 4a-4e. These non-peptidal CCK ligands have been shown to act as potent CCK 1 ligands in a [125]I-CCK-8 receptor binding assay. The best amides (4c and 4d) of this series displayed an IC50 of 20/25 CCK 1 for the CCK 1 receptor. In a subsequent in-vivo evaluation using various behaviour pharmacological assays, an anxiolytic effect of these novel 3-oxo-1,2-diphenyl-2,3-dihydro-1H-pyrazol-4-yl)-indole carboxamides was found at high doses in the elevated plus-maze. In the despair swimming test, a model for testing antidepressants, an ED50 of 0.33/0.41 mg kg -1 was determined for amide 4c/4d and the antidepressant effect had a magnitude comparable to desimipramine. © 2006 The Authors.
Resumo:
Type IA fiber gratings have unusual physical properties compared with other grating types. We compare with performance characteristics of Type IA and Type I Bragg gratings exposed to the effects of Co60 gamma-irradiation. A Bragg peak shift of 190 pm was observed for Type IA gratings written in Fibercore PS-1250/1500 photosensitive fiber at a radiation dose of 116 kGy. This is the largest wavelength shift recorded to date under radiation exposure. The Type IA and Type I gratings show different kinetics under radiation and during post-radiation annealing; this can be exploited for the design of a grating based dosimetry system. © 2012 SPIE.