4 resultados para 3T3 neutral red uptake
em Aston University Research Archive
Resumo:
Disturbances in electrolyte homeostasis are a frequent adverse side-effect of the administration of aminoglycoside antibiotics such as gentamicin, and the antineoplastic agent cis-platinum. The aims of this work were to further elucidate the site(s) and mechanism(s) by which these drugs may produce disturbances in the renal reabsorption of calcium and magnesium. These investigations were undertaken using a range of in vivo and in vitro techniques and models. Initially, a series of in vivo studies was conducted to delineate aspects of the acute and chronic effects of both drugs on renal electrolyte handling and to select and evaluate an appropriate animal model: subsequent investigations were focused on gentamicin. In a study of the acute and chronic effects of cis-platinum administration, there were pronounced acute changes in a variety of indices of nephrotoxic injury, including electrolyte excretion. Most effects resolved but there were chronic increases in the urinary excretion of calcium and magnesium. The renal response of three strains of rat (Fischer 344, Sprague-Dawley (SD), and Wistar) to a ranges of doses of gentamicin was also investigated. Drug administration produced substantially different responses between strains, in particular marked differences in calcium and magnesium excretion. The results suggested that the SD rat was an appropriately sensitive strain for use in further investigations. Acute infusion of gentamicin in the anaesthetised SD rat produced rapid, substantial increases in the fractional excretion of calcium and magnesium, while sodium and potassium output were unaffected, confirming previous results of similar experiments using F344 rats. Studies using lithium clearance measurements in the anaesthetised SD rat were undertaken to investigate the effects of gentamicin on proximal tubular calcium reabsorption. Lithium clearance was unaffected by acute gentamicin infusion, suggesting that the site of acute gentamicin-induced hypercalciuria may not be located in the proximal tubule. Inhibition of Ca2+ ATPase activity was investigated as a potential mechanism by which calcium reabsorption could be affected after aminoglycoside administration. In vitro, both Ca2+ ATPase and Na+/K+ ATPase activity could be similarly inhibited by the presence of aminoglycosides, in a dose-related manner. Whilst inhibition of Na+/K+ ATPase could be demonstrated biochemically after in vivo administration of gentamicin, there were no concurrent effects on Ca2+ ATPase activity, suggesting that inhibition of Ca2+ ATPase activity is unlikely to be a primary mechanism of aminoglycoside-induced reductions of calcium reabsorption. Histochemical studies could not discern inhibition of either Na+/K+ ATPase or Ca2+ ATPase activity after in vivo administration of gentamicin. Selection of renal cell lines for further investigative in vitro studies on the mechanisms of altered cation reabsorption was considered using MTT (3-(4,5,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Neutral Red cytotoxicity assays. The ability of LLC-PK1 and LLC-RK1 cell lines to correctly rank a series of nephrotoxic compounds with their known nephrotoxic potency in vivo was studied. Using these cell lines grown on semi-permeable inserts, alterations in the paracellular transport of 45Ca was investigated as a possible mechanism by which gentamicin could alter calcium reabsorption in vivo. Short term exposure (I h) of LLC-RK1 cells to gentamicin, via both cell surfaces, resulted in a reduction in paracellular permeability to both transepithelial 3H-mannitol and 45Ca fluxes. When LLC-RK1 cells were exposed via the apical surface only, similar dose-related reductions were seen to those observed when cells were exposed to the drug from both sides. Short-term basal exposure to gentamicin appeared to contribute less to the observed reductions in 3H-mannitol and 45Ca fluxes. Experiments investigating transepithelial movement of 45Ca and 3H-mannitol on LLC-PK1 cells after acute gentamicin exposure were inconclusive. Longer exposure (48 h) to gentamicin caused an increase in the permeability of the monolayer and a consequent increase in transepithelial 45Ca flux in the LLC-RK1 cell line; increases in permeability of LLC-PK1 cells to 45Ca and 3H-mannitol were not apparent under the same conditions. The site and mechanism at which gentamicin, in particular, alters calcium reabsorption cannot be definitively described from these studies. However, indirect evidence from lithium clearance studies suggests that the site of the lesion is unlikely to be located in the proximal tubule. The mechanism by which gentamicin exposure alters calcium reabsorption may be by reducing paracellular permeability to calcium rather than by altering active calcium transport processes.
Resumo:
The microbial demand for iron is often met by the elaboration of siderophores into the surrounding medium and expression of cognate outer membrane receptors for the ferric siderophore complexes. Conditions of iron limitation, such as those encountered in vivo, cause Pseudomonas aeruginosa to express two high-affinity iron-uptake systems based on pyoverdin and pyochelin. These systems will operate both in the organism's natural habitat, soil and water, where the solubility of iron at neutral pH is extremely low, and in the human host where the availability of free iron is too low to sustain bacterial growth due to the iron-binding glycoproteins transferrin and lactoferrin. Cross-feeding and radiolabelled iron uptake experiments demonstrated that pyoverdin biosynthesis and uptake were highly heterogeneous amongst P.aeruginosa strains, that growth either in the presence of pyoverdin or pyochelin resulted in induction of specific IROMPs, and that induction of iron uptake is siderophore-specific. The P.aeruginosa Tn5 mutant PH1 is deficient in ferripyoverdin uptake and resistant to pyocin Sa, suggesting that the site of interaction of pyocin Sa is a ferripyoverdin receptor. Additional Tn5 mutants appeared to exploit different strategies to achieve pyocin Sa-resistance, involving modifications in expression of pyoverdin-mediated iron uptake, indicating that complex regulatory systems exist to enable these organisms to compete effectively for iron. Modulation of expression of IROMPs prompted a study of the mechanism of uptake of a semi-synthetic C(7) α-formamido substituted cephalosporin BRL 41897A. Sensitivity to this agent correlated with expression of the 75 kDa ferri-pyochelin receptor and demonstrated the potential of high-affinity iron uptake systems for targeting of novel antibiotics. Studies with ferri-pyoverdin uptake-deficient mutant PH1 indicated that expression of outer membrane protein G (OprG), which is usually expressed under iron-rich conditions and repressed under iron-deficient conditions, was perturbed. Attempts were made to clone the oprG gene using a degenerate probe based on the N-terminal amino acid sequence. A strongly hybridising HindIll restriction fragment was cloned and sequenced, but failed to reveal an open reading frame correspondmg to OprG. However, there appears to be good evidence that a part of the gene codmg for the hydrophilic membrane-associated ATP-binding component of a hitherto uncharacterised periplasmic- binding-protein-dependent transport system has been isolated. The full organisation and sequence of the operon, and substrate for this putative transport system, are yet: to be elucidated,
Resumo:
Using a unique firm level data, this paper analyses the role of political connections in the post-entry performance of private start-up companies in China. It documents robust evidence that political affiliation enhances firms' survival and growth prospects. But interestingly politically neutral start-ups enjoy faster productivity improvements conditional on survival. In addition, the benefits of political connections are largely confined to firms associated with local or top level governments, and they are more pronounced in capital-intensive industries. We conclude that the close association between the state and a segment of the business community is leading to sub-optimal resource allocation in the economy by interfering with the process of market selection.
Resumo:
Background/Aims: Extracellular vesicles (EVs) are spherical fragments of cell membrane released from various cell types under physiological as well as pathological conditions. Based on their size and origin, EVs are classified as exosome, microvesicles (MVs) and apoptotic bodies. Recently, the release of MVs from human red blood cells (RBCs) under different conditions has been reported. MVs are released by outward budding and fission of the plasma membrane. However, the outward budding process itself, the release of MVs and the physical properties of these MVs have not been well investigated. The aim of this study is to investigate the formation process, isolation and characterization of MVs released from RBCs under conditions of stimulating Ca2+ uptake and activation of protein kinase C. Methods: Experiments were performed based on single cell fluorescence imaging, fluorescence activated cell sorter/flow cytometer (FACS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and dynamic light scattering (DLS). The released MVs were collected by differential centrifugation and characterized in both their size and zeta potential. Results: Treatment of RBCs with 4-bromo-A23187 (positive control), lysophosphatidic acid (LPA), or phorbol-12 myristate-13 acetate (PMA) in the presence of 2 mM extracellular Ca2+ led to an alteration of cell volume and cell morphology. In stimulated RBCs, exposure of phosphatidylserine (PS) and formation of MVs were observed by using annexin V-FITC. The shedding of MVs was also observed in the case of PMA treatment in the absence of Ca2+, especially under the transmitted bright field illumination. By using SEM, AFM and DLS the morphology and size of stimulated RBCs, MVs were characterized. The sizes of the two populations of MVs were 205.8 ± 51.4 nm and 125.6 ± 31.4 nm, respectively. Adhesion of stimulated RBCs and MVs was observed. The zeta potential of MVs was determined in the range from - 40 mV to - 10 mV depended on the solutions and buffers used. Conclusion: An increase of intracellular Ca2+ or an activation of protein kinase C leads to the formation and release of MVs in human RBCs.