36 resultados para 3H depos

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The binding of [3H]inositol hexakisphosphate ([3H] InsP6) to rat cerebellar membranes has been characterized with the objective of establishing the role, if any, of a membrane protein receptor. In the presence of EDTA, we have previously identified an InsP6-binding site with a capacity of approximately 20 pmol/mg protein (Hawkins, P. T., Reynolds, D. J. M., Poyner, D. R., and Hanley, M. R. (1990) Biochem. Biophys. Res. Commun. 167, 819-827). However, in the presence of 1 mM Mg2+, the capacity of [3H]InsP6 binding to membranes was increased approximately 9-fold. This enhancing effect of Mg2+ was reversed by addition of 10 microM of several cation chelators, suggesting that the increased binding required trace quantities of other metal cations. This is supported by experiments where it was possible to saturate binding by addition of excess membranes, despite not significantly depleting radioligand, pointing to removal of some other factor. Removal of endogenous cations from the binding assay by pretreatment with chelex resin also prevents the Mg(2+)-induced potentiation. Consideration of the specificity of the chelators able to abolish this potentiation suggested involvement of Fe3+ or Al3+. Both these ions (but not several others) were able to increase [3H]InsP6 binding to chelex-pretreated membranes at concentrations of 1 microM. It is possible to demonstrate synergy between Fe3+ and Mg2+ under these conditions. We propose that [3H]InsP6 may interact with membranes through non-protein recognition possibly via phospholipids, in a manner dependent upon trace metals. The implications of this for InsP6 biology are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[3H]Inositol hexakisphosphate (InsP6) binds with a heterogeneous distribution to frozen sections of unfixed rat brain and is displaced by unlabelled InsP6. The pattern of binding correlates with binding to neuronal cell bodies. [3H]InsP6 binding to cerebellar membranes has been further characterised, is reversible, and saturable, and exhibits high specificity for inositol polyphosphates. The IC50 for competition by unlabelled InsP6 is approximately 100nM, whereas inositol 1,3,4,5,6 pentakisphosphate (Ins(13456)P5), inositol 1,3,4,5 tetrakisphosphate (Ins(1345)P4), and inositol 1,4,5 trisphosphate (Ins(145)P3) bind with an affinity at least one order of magnitude lower. [3H]InsP6 binding is clearly distinct from previously characterised Ins(145)P3 (ref. 1, 2) and Ins(1345)P4 (ref. 3) binding, both in terms of pharmacology and brain distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myo-Inositol hexakisphosphate (InsP6), which is found in soil and most, if not all, plant and animal cells, has been estimated to have an affinity for Fe3+ in the range of 10(25) to 10(30) M-1. In this report, we demonstrate that the Fe-InsP6 complex has siderophore activity and is able to reverse the iron-restricted growth inhibition of Pseudomonas aeruginosa by ethylene diamine di(o-hydroxyphenyl)acetic acid. With 55Fe-InsP6 in transport studies, iron uptake is strongly iron regulated, being repressed after growth in iron-replete conditions and inhibited by treatment with potassium cyanide and carbonyl cyanide m-chlorophenylhydrazone. The kinetics of iron transport revealed a Km of 100 nM. Self-displacement of binding of [3H]InsP6 to isolated membranes by InsP6 revealed a single class of binding sites (Kd = 143 +/- 6 nM; Hill coefficient, 1.1 +/- 0.1). The binding of [3H]InsP6 to membranes was not dependent on whether cells had been grown under conditions of high or low iron concentrations. We believe that this is the first report of inositol polyphosphate activity in prokaryotic cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Standard and high-performance anion-exchange-chromatographic techniques have been used to purify myo-[3H]inositol pentakisphosphates from various myo-[3H]inositol-prelabelled cells. Slime mould (Dictyostelium discoideum) contained 8 microM-myo-[3H]inositol 1,3,4,5,6-pentakisphosphate 16 microM-myo-[3H]inositol 1,2,3,4,6-pentakisphosphate and 36 microM-D-myo-[3H]inositol 1,2,4,5,6-pentakisphosphate [calculated intracellular concentrations; Stephens & Irvine (1990) Nature (London) 346 580-583]; germinating mung-bean (Phaseolus aureus) seedlings contained both D- and L-myo-[3H]inositol 1,2,4,5,6-pentakisphosphate (which was characterized by 31P and two-dimensional proton n.m.r.) and D- and/or L-myo-[3H]inositol 1,2,3,4,5-pentakisphosphate; HL60 cells contained myo-[3H]inositol 1,3,4,5,6-pentakisphosphate (in a 500-fold excess over the other species), myo-[3H]inositol 1,2,3,4,6-pentakisphosphate and D- and/or L-myo-[3H]inositol 1,2,4,5,6-pentakisphosphate; and NG-115-401L-C3 cells contained myo-[3H]inositol 1,3,4,5,6-pentakisphosphate (in a 100-fold excess over the other species), D- and/or L-myo-[3H]inositol 1,2,4,5,6-pentakisphosphate, myo-[3H]inositol 1,2,3,4,6-pentakisphosphate and D- and/or L-myo-[3H]inositol 1,2,3,4,5-pentakisphosphate. 2. Multiple soluble ATP-dependent myo-inositol pentakisphosphate kinase activities have been detected in slime mould, rat brain and germinating mung-bean seedling homogenates. In slime-mould cytosolic fractions, the three myo-inositol pentakisphosphates that were present in intact slime moulds could be phosphorylated to myo-[3H]inositol hexakisphosphate: the relative first-order rate constants for these reactions were, in the order listed above, 1:8:31 respectively (with first-order rate constants in the intact cell of 0.1, 0.8 and 3.1 s-1, assuming a cytosolic protein concentration of 50 mg/ml), and the Km values of the activities for their respective inositol phosphate substrates (in the presence of 5 mM-ATP) were 1.6 microM, 3.8 microM and 1.4 microM. At least two forms of myo-inositol pentakisphosphate kinase activity could be resolved from a slime-mould cytosolic fraction by both pharmacological and chromatographic criteria. Rat brain cytosol and a soluble fraction derived from germinating mung-bean seedlings could phosphorylate myo-inositol D/L-1,2,4,5,6-, D/L-1,2,3,4,5-, 1,2,3,4,6- and 1,3,4,5,6-pentakisphosphates to myo-inositol hexakisphosphate: the relative first-order rate constants were 57:27:77:1 respectively for brain cytosol (with first-order rate constants in the intact cell of 0.0041, 0.0019, 0.0056 and 0.000073 s-1 respectively, assuming a cytosolic protein concentration of 50 mg/ml) and 1:11:12:33 respectively for mung-bean cytosol (with first-order rate constants in a supernatant fraction with a protein concentration of 10 mg/ml of 0.0002, 0.0022, 0.0024 and 0.0066 s-1 respectively).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The muscarinic receptor from the cerebral cortex, heart, and lacrimal gland can be solubilized in the zwitterionic detergent 3-(3-cholamidopropyl)dimethylammonio-2-hydroxy-1-propane sulfonate (CHAPSO) with retention of high affinity [3H]N-methyls-copolamine binding. However, in this detergent there are significant differences in the binding properties of the receptors, compared with those observed in membranes and digitonin solution. Some agents retain a degree of selectivity. In the heart and cortex, agonists can bind with high affinity to a receptor-GTP-binding protein complex. A second, lower affinity, agonist binding state is also present, which resembles a class of sites seen in membranes but not in digitonin solution. The high affinity agonist binding state has been resolved from the lower affinity state on sucrose density gradient centrifugation. Hydrodynamic analysis suggests that the high affinity state is approximately 110,000 Da larger than the lower affinity state. The binding properties of the receptor in CHAPSO can be altered to those seen in digitonin by exchanging detergents after CHAPSO solubilization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the hypothesis that 6,7-dihydroxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) is neurotoxic. Salsolinol induced a significant time and dose related inhibition of 3[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; thiazoyl blue (MTT) reduction, and increased lactate dehydrogenase release (LDH) release from human SH-SY5Y neuroblastoma cells, at concentrations within the range of 1-methyl-4-phenylpyridinium (MPP+) cytotoxicity, in vitro. Cytotoxicity was not inhibited by the addition of antioxidants, monoamine oxidase inhibitors or imipramine. In confluent monolayers, salsolinol stimulated catecholamine uptake with EC50 values of 17 muM and 11 muM, for noradrenaline and dopamine, respectively. Conversely, at concentrations above 100 muM, salsolinol inhibited the uptake of noradrenaline and dopamine, with IC50 values of 411 muM and 379 muM, respectively. The inhibition of catecholamine uptake corresponded to the increase displacement of [3H]nisoxetine from the uptake 1 site by salsolinol, as the Ki (353 muM) for displacement was similar to the IC50 (411 and 379 muM) for uptake. Salsolinol stimulated catecholamine uptake does not involve the uptake recognition site, or elevation of cAMP, cGMP, or inhibition of protein kinase C. Salsolinol also inhibited both carbachol (1 mM) and K+ (100 mM, Na+ adjusted) evoked released of noradrenaline from SH-SY5Y cells, with IC50 values of 500 muM and 120 muM, respectively. In conclusion, salsolinol appears to be cytotoxic to SH-SY5Y cells, via a mechanism that does not require uptake 1, bioactivation by monoamine oxidase, or membrane based free radical damage. The effects of salsolinol on catecholamine uptake, and the mechanism of toxicity require further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity and insulin resistance are important risk factors for atherosclerosis, and elevated level of plasma NEFA is a common feature in individuals with obesity and insulin resistance. Palmitate, one of the most abundant non-esterified SFA in plasma, has been reported to induce insulin resistance in adipose tissues and skeletal muscles and to cause an increased inflammatory response in monocytes. The present study investigated whether palmitate can induce insulin resistance in monocytes and its effect on monocyte adhesion molecular expression (CD11b). Insulin resistance was measured by in vitro uptake of insulin-stimulated 3H-labelled 2-deoxy-D-glucose into THP-1 cells, cell surface CD11b expression was measured by flow cytometry. The data showed that palmitate-induced insulin resistance in THP-1 monocytes was concentration and time dependent (Figure 1). The insulin-stimulated glucose uptake was significantly decreased in cells treated with 300 mM-palmitate compared with control cells (P<0.001) and was observed within 6 h, but was not a result of palmitate toxicity. There was no significant increase in caspase 3 activation (P>0.05). Treatment with 300 mM-palmitate for 24 h also caused a significant increase in surface CD11b expression in both U937 and THP-1 monocytic cell lines and human primary monocytes compared with the control (P<0.001). Both these effects were inhibited by co-incubation with Fumonisin B1, an inhibitor of de novo ceramide synthesis. In conclusion, these data show that palmitate, at physiological concentrations, can cause insulin resistance in monocytes and increase monocyte surface integrin CD11b expression, which is in part the result of the synthesis of ceramide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously tested the effects of high dose AA supplements on human volunteers in terms of reducing DNA damage, as a possible mechanism of the vitamin’s proposed protective effect against cancer and detected a transient, pro-oxidant effect at high doses (500 mg/day). Herein, we present evidence of a pro-oxidant effect of the vitamin when added to CCRF cells at extracellular concentrations which mimic those present in human serum in vivo (50–150AM). The activation of the transcription factor AP-1 was optimal at 100 AM AA following 3h exposure at 37jC. A minimum dose of 50 AM of AA activated NFnB but there appeared to be no dose-dependent effect. Increases of 2–3 fold were observed for both transcription factors when cells were exposed to 100 AM AA for 3h, comparing well with the pro-oxidant effect of H2O2 at similar concentrations. In parallel experiments the activation of AP-1 (binding to DNA) was potentiated when cells were pre-incubated with AA prior to exposure with H2O2. Cycloheximide pretreatment (10 Ag/ml for 15min) caused a 50% inhibition of AP-1 binding to DNA suggesting that it was due to a combination of increasing the binding of pre-existing Fos and Jun and an increase in their de novo synthesis. Cellular localisation was confirmed by immunocytochemistry using antibodies specific for c-Fos and c-Jun proteins. These results suggest that extracellular AA can elicit an intracellular stress response resulting in the activation of the oxidative stress-responsive transcription factors AP-1 and NFnB. These transcription factors are involved in the induction of genes associated with an oxidative stress response, cell cycle arrest and DNA repair confirmed by our cDNA microarray analysis (Affymetrix). This may explain the abilty for AA to appear to inhibit 8-oxodG, yet simultaneously generate another oxidative stress biomarker, 8-oxo-dA. These results suggest a completely novel DNA repair action for AA. Whether this action is relevant to our in vivo findings will be the subject of our future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oleate has been shown to protect against palmitate-induced insulin resistance. The present study investigates mechanisms involved in the interaction between oleate and palmitate on insulin-stimulated glucose uptake by L6 skeletal muscle cells. L6 myotubes were cultured for 6 h with palmitate or oleate alone, and combinations of palmitate with oleate, with and without phosphatidylinositol 3-kinase (PI3-kinase) inhibition. Insulin-stimulated glucose uptake, measured by uptake of 2-deoxy-d-[3H]glucose, was almost completely prevented by 300 microm-palmitate. Cells incubated with oleate up to 750 micromol/l maintained a significant increase in insulin-stimulated glucose uptake. Co-incubation of 50-300 microm-oleate with 300 microm-palmitate partially prevented the decrease in insulin-stimulated glucose uptake associated with palmitate. Adding the PI3-kinase inhibitors wortmannin (10- 7 mol/l) or LY294002 (25 micromol/l) to 50 microm-oleate plus 300 microm-palmitate significantly reduced the beneficial effect of oleate against palmitate-induced insulin resistance, indicating that activation of PI3-kinase is involved in the protective effect of oleate. Thus, the prevention of palmitate-induced insulin resistance by oleate in L6 muscle cells is associated with the ability of oleate to maintain insulin signalling through PI3-kinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coordination of the functional activities of intestinal CYP3A4 and P-gp in limiting the absorption of xenobiotics in Caco-2 cells was investigated. Growing Caco-2 cells were exposed to increasing concentrations of doxorubicin (1-2 μM) in plastic flasks to encourage a subpopulation of cells, that displayed an intrinsically higher multidrug resistance (mdr) phenotype than the parent cells, to survive and grow. Doxorubicin-exposed (hereinafter referred to as type I cells) and nonexposed Caco-2 cells (parent cells) on collagen-coated inserts were also treated with either 0 (control) or 0.25 μM 1α,25-dihydroxyvitamin D3 to promote cellular CYP3A4 expression. Increased P-gp protein expression, as detected by Western blotting, was noted in type I cells (213±54.35%) compared to that of parent cells (100±6.05%). Furthermore, they retained significantly less [3H]vincristine sulphate (p<0.05), a P-gp substrate, after efflux (272.89±11.86 fmol/mg protein) than the parent cells (381.39±61.82 fmol/mg protein). The expression of CYP3A4 in parental cells after 1α,25-dihydroxyvitamin D3 treatment was quantified to be 76.2±7.6 pmol/mg protein and comparable with that found in human jejunal enterocytes (70.0±20.0 pmol/mg protein). Type I cells, however, expressed a very low quantity of CYP3A4 both before and after the treatment that was beyond the minimum detection limit of Western blotting. Functionally, the rates of 1-hydroxylation of midazolam by CYP3A for both cell types ranged from 257.0±20.0 to 1057.0±46.0 pmol/min/mg protein. Type I cells, although having a higher P-gp expression and activity comparatively, metabolized midazolam less extensively than the parent cells. The results suggested that there were noncoordinated functional activities of intestinal CYP3A4 and P-gp in Caco-2 cells, although they both functioned independently to minimize intestinal epithelial absorption of xenobiotics. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment of murine myoblasts, myotubes and tumour cells with a tumour-produced lipid mobilizing factor (LMF), caused a concentration-dependent stimulation of protein synthesis, within a 24 h period. There was no effect on cell number or [3H] thymidine incorporation, but a similar concentration-dependent stimulation of 2-deoxyglucose uptake. LMF produced an increase in intracellular cyclic AMP levels, which was linearly (r2 = 0.973) related to the increase in protein synthesis. The effect of LMF was attenuated by the adenylate cyclase inhibitor MDL12330A, and was additive with the stimulation produced by forskolin. Both propranolol (10 μM) and the specific β3-adrenergic receptor antagonist SR 59230A (10-5M), significantly reduced the stimulation of protein synthesis induced by LMF. Protein synthesis was also increased by 69% (P = 0.006) in soleus muscles of mice administered LMF, while there was a 26% decrease in protein degradation (P = 0.03). While LMF had no effect on the lysosomal enzymes, cathepsins B and L, there was a decrease in proteasome activity, as determined both by the 'chymotrypsin-like' enzyme activity, as well as expression of proteasome α-type subunits, determined by Western blotting. These results show that in addition to its lipid-mobilizing activity LMF also increases protein accumulation in skeletal muscle both by an increase in protein synthesis and a decrease in protein catabolism. © 2001 Cancer Research Campaign.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The up-regulation and trafficking of tissue transglutaminase (TG2) by tubular epithelial cells (TEC) has been implicated in the development of kidney scarring. TG2 catalyses the crosslinking of proteins via the formation of highly stable e(?-glutamyl) lysine bonds. We have proposed that TG2 may contribute to kidney scarring by accelerating extracellular matrix (ECM) deposition and by stabilising the ECM against proteolytic decay. To investigate this, we have studied ECM metabolism in Opossum kidney (OK) TEC induced to over-express TG2 by stable transfection and in tubular cells isolated from TG2 knockout mice. Increasing the expression of TG2 led to increased extracellular TG2 activity (p < 0.05), elevated e(?-glutamyl) lysine crosslinking in the ECM and higher levels of ECM collagen per cell by 3H-proline labelling. Immunofluorescence demonstrated that this was attributable to increased collagen III and IV levels. Higher TG2 levels were associated with an accelerated collagen deposition rate and a reduced ECM breakdown by matrix metalloproteinases (MMPs). In contrast, a lack of TG2 was associated with reduced e(?-glutamyl) lysine crosslinking in the ECM, causing reduced ECM collagen levels and lower ECM per cell. We report that TG2 contributes to ECM accumulation primarily by accelerating collagen deposition, but also by altering the susceptibility of the tubular ECM to decay. These findings support a role for TG2 in the expansion of the ECM associated with kidney scarring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An uptake system was developed using Caco-2 cell monolayers and the dipeptide, glycyl-[3H]L-proline, as a probe compound. Glycyl-[3H]L-proline uptake was via the di-/tripeptide transport system (DTS) and, exhibited concentration-, pH- and temperature-dependency. Dipeptides inhibited uptake of the probe, and the design of the system allowed competitors to be ranked against one another with respect to affinity for the transporter. The structural features required to ensure or increase interaction with the DTS were defined by studying the effect of a series of glycyl-L-proline and angiotensin-converting enzyme (ACE)-inhibitor (SQ-29852) analogues on the uptake of the probe. The SQ-29852 structure was divided into six domains (A-F) and competitors were grouped into series depending on structural variations within specific regions. Domain A was found to prefer a hydrophobic function, such as a phenyl group, and was intolerant to positive charges and H+ -acceptors and donors. SQ-29852 analogues were more tolerant of substitutions in the C domain, compared to glycyl-L-proline analogues, suggesting that interactions along the length of the SQ-29852 molecule may override the effects of substitutions in the C domain. SQ-29852 analogues showed a preference for a positive function, such as an amine group in this region, but dipeptide structures favoured an uncharged substitution. Lipophilic substituents in domain D increased affinity of SQ-29852 analogues with the DTS. A similar effect was observed for ACE-NEP inhibitor analogues. Domain E, corresponding to the carboxyl group was found to be tolerant of esterification for SQ-29852 analogues but not for dipeptides. Structural features which may increase interaction for one series of compounds, may not have the same effect for another series, indicating that the presence of multiple recognition sites on a molecule may override the deleterious effect of anyone change. Modifying current, poorly absorbed peptidomimetic structures to fit the proposed hypothetical model may improve oral bioavailability by increasing affinity for the DTS. The stereochemical preference of the transporter was explored using four series of compounds (SQ-29852, lysylproline, alanylproline and alanylalanine enantiomers). The L, L stereochemistry was the preferred conformation for all four series, agreeing with previous studies. However, D, D enantiomers were shown in some cases to be substrates for the DTS, although exhibiting a lower affinity than their L, L counterparts. All the ACE-inhibitors and β-lactam antibiotics investigated, produced a degree of inhibition of the probe, and thus show some affinity for the DTS. This contrasts with previous reports that found several ACE inhibitors to be absorbed via a passive process, thus suggesting that compounds are capable of binding to the transporter site and inhibiting the probe without being translocated into the cell. This was also shown to be the case for oligodeoxynucleotide conjugated to a lipophilic group (vitamin E), and highlights the possibility that other orally administered drug candidates may exert non-specific effects on the DTS and possibly have a nutritional impact. Molecular modelling of selected ACE-NEP inhibitors revealed that the three carbonyl functions can be oriented in a similar direction, and this conformation was found to exist in a local energy-minimised state, indicating that the carbonyls may possibly be involved in hydrogen-bond formation with the binding site of the DTS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptidic Nucleic Acids (PNAs) are achiral, uncharged nucleic add mimetics, with a novel backbone composed of N-(2-aminoethyl)glycine units attached to the DNA bases through carboxymethylene linkers. With the aim of extending and improving upon the molecular recognition properties of PNAs, the aim of this work was to synthesjse PNA building block intermediates containing a series of substituted purine bases for subsequent use in automated PNA synthesis. Four purine bases: 2,6~diaminopurine (D), isoGuanine (isoG), xanthine (X) and hypoxanthine (H) were identified for incorporation into PNAs targeted to DNA, with the promise of increased hybrid stability over extended pH ranges together with improvements over the use of adenine (A) in duplex formation, and cytosine (C) in triplex formation. A reliable, high-yielding synthesis of the PNA backbone component N -('2- butyloxycarbonyl-aminoethyl)glycinate ethyl ester was establishecl. The precursor N~(2-butyloxycarbonyl)amino acetonitrile was crystallised and analysed by X-ray crystallography for the first time. An excellent refinement (R = 0.0276) was attained for this structure, allowing comparisons with known analogues. Although chemical synthesis of pure, fully-characterised PNA monomers was not achieved, chemical synthesis of PNA building blocks composed of diaminopurine, xanthine and hypoxanthine was completely successful. In parallel, a second objective of this work was to characterise and evaluate novel crystalline intermediates, which formed a new series of substituted purine bases, generated by attaching alkyl substituents at the N9 or N7 sites of purine bases. Crystallographic analysis was undertaken to probe the regiochemistry of isomers, and to reveal interesting structural features of the new series of similarly-substituted purine bases. The attainment of the versatile synthetic intermediate 2,6-dichloro~9- (carboxymethyl)purine ethyl ester, and its homologous regioisomers 6-chloro~9- (carboxymethyl)purine ethyl ester and 6-chloro-7-(carboxymethyl)purine ethyl ester, necessitated the use of X-ray crystallographic analysis for unambiguous structural assignment. Successful refinement of the disordered 2,6-diamino-9-(carboxymethyl) purine ethyl ester allowed comparison with the reported structure of the adenine analogue, ethyl adenin-9-yl acetate. Replacement of the chloro moieties with amino, azido and methoxy groups expanded the internal angles at their point of attachment to the purine ring. Crystallographic analysis played a pivotal role towards confirming the identity of the peralkylated hypoxanthine derivative diethyl 6-oxo-6,7-dihydro-3H-purlne~3,7~djacetate, where two ethyl side chains were found to attach at N3 and N7,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vitro toxicity tests which detect evidence of the formation of reactive metabolites have previously relied upon cell death as a toxicity end point. Therefore these tests determine cytotoxicity in terms of quantitative changes in specified cell functions. In the studies involving the CaC0-2 cell model, there was no significant change in the transport of [3H] L-proline by the cell after eo-incubation with either dapsone or cyclophosphamide (50µM) and rat liver microsomal metabolite generating system. The pre incubation of the cells with N-ethylmalemide to inhibit Phase II sulphotransferase activity, prior to the microsomal incubations, resulted in cytotoxcity in all incubation groups. Studies involving the L6 cell model showed that there was no significant effect in the cell signalling pathway producing the second messenger cAMP, after incubation with dapsone or cyclophosphamide (50µM) and the rat microsomal metabolite generating system. There was also no significant affect on the vasopressin stimulated production of the second messenger IP3, after incubation with the hydroxylamine metabolite of dapsone, although there were some morphological changes observed with the cells at the highest concentration of dapsone hydroxylamine (100µM). With the test involving the NG115-401 L-C3 cell model, there was no significant changes in DNA synthesis in terms of [3H] thymidine incorporation, after eo-incubation with either phenytoin or cyclophosphamide (50µM) and the rat microsomal metabolite generating system. In the one compartment erythrocyte studies, there were significant decreases in glutathione with cyclophosphamide (50µM) (0.44 ± 0.04 mM), sulphamethoxazole (50µM) (0.43 ± 0.08mM) and carbamazepine (50µM) (0.47 ± 0.034 mM), when eoincubated with the rat microsomal system, compared to the control (0.52 ± 0.07mM). There was no significant depletion in glutathione when the erythrocytes were eoincubated with phenytoin and the rat microsomal system. In the two compartment erythrocyte studies, there was a significant decrease in the erythrocyte glutathione with cyclophosphamide (50µM) (0.953 ± 0110mM) when co-incubated the rat microsomal system, compared to the control (1.124 ± 0.032mM). Differences were considered statistically significant for p<0.05, using the Student's two tailed 't' test with Bonferroni's correction. There was no significant depletion of glutathione with phenytoin, carbamazepine and sulphamethoxazole when co-incubated with the rat microsomalsystem, compared to the control.