2 resultados para 38-0.45 µm carbonate fraction
em Aston University Research Archive
Resumo:
Background - Previous Cochrane reviews have considered the use of cholinesterase inhibitors in both Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB). The clinical features of DLB and PDD have much in common and are distinguished primarily on the basis of whether or not parkinsonism precedes dementia by more than a year. Patients with both conditions have particularly severe deficits in cortical levels of the neurotransmitter acetylcholine. Therefore, blocking its breakdown using cholinesterase inhibitors may lead to clinical improvement. Objectives - To assess the efficacy, safety and tolerability of cholinesterase inhibitors in dementia with Lewy bodies (DLB), Parkinson’s disease with dementia (PDD), and cognitive impairment in Parkinson’s disease falling short of dementia (CIND-PD) (considered as separate phenomena and also grouped together as Lewy body disease). Search methods - The trials were identified from a search of ALOIS, the Specialised Register of the Cochrane Dementia and Cognitive Improvement Group (on 30 August 2011) using the search terms Lewy, Parkinson, PDD, DLB, LBD. This register consists of records from major healthcare databases (MEDLINE, EMBASE, PsycINFO, CINAHL) and many ongoing trial databases and is updated regularly. Reference lists of relevant studies were searched for additional trials. Selection criteria - Randomised, double-blind, placebo-controlled trials assessing the efficacy of treatment with cholinesterase inhibitors in DLB, PDD and cognitive impairment in Parkinson’s disease (CIND-PD). Data collection and analysis - Data were extracted from published reports by one review author (MR). The data for each 'condition' (that is DLB, PDD or CIND-PD) were considered separately and, where possible, also pooled together. Statistical analysis was conducted using Review Manager version 5.0. Main results - Six trials met the inclusion criteria for this review, in which a total of 1236 participants were randomised. Four of the trials were of a parallel group design and two cross-over trials were included. Four of the trials included participants with a diagnosis of Parkinson's disease with dementia (Aarsland 2002a; Dubois 2007; Emre 2004; Ravina 2005), of which Dubois 2007 remains unpublished. Leroi 2004 included patients with cognitive impairment and Parkinson's disease (both with and without dementia). Patients with dementia with Lewy bodies (DLB) were included in only one of the trials (McKeith 2000). For global assessment, three trials comparing cholinesterase inhibitor treatment to placebo in PDD (Aarsland 2002a; Emre 2004; Ravina 2005) reported a difference in the Alzheimer's Disease Cooperative Study-Clinical Global Impression of Change (ADCS-CGIC) score of -0.38, favouring the cholinesterase inhibitors (95% CI -0.56 to -0.24, P < 0.0001). For cognitive function, a pooled estimate of the effect of cholinesterase inhibitors on cognitive function measures was consistent with the presence of a therapeutic benefit (standardised mean difference (SMD) -0.34, 95% CI -0.46 to -0.23, P < 0.00001). There was evidence of a positive effect of cholinesterase inhibitors on the Mini-Mental State Examination (MMSE) in patients with PDD (WMD 1.09, 95% CI 0.45 to 1.73, P = 0.0008) and in the single PDD and CIND-PD trial (WMD 1.05, 95% CI 0.42 to 1.68, P = 0.01) but not in the single DLB trial. For behavioural disturbance, analysis of the pooled continuous data relating to behavioural disturbance rating scales favoured treatment with cholinesterase inhibitors (SMD -0.20, 95% CI -0.36 to -0.04, P = 0.01). For activities of daily living, combined data for the ADCS and the Unified Parkinson's Disease Rating Scale (UPDRS) activities of daily living rating scales favoured treatment with cholinesterase inhibitors (SMD -0.20, 95% CI -0.38 to -0.02, P = 0.03). For safety and tolerability, those taking a cholinesterase inhibitor were more likely to experience an adverse event (318/452 versus 668/842; odds ratio (OR) 1.64, 95% CI 1.26 to 2.15, P = 0.0003) and to drop out (128/465 versus 45/279; OR 1.94, 95% CI 1.33 to 2.84, P = 0.0006). Adverse events were more common amongst those taking rivastigmine (357/421 versus 173/240; OR 2.28, 95% CI 1.53 to 3.38, P < 0.0001) but not those taking donepezil (311/421 versus 145/212; OR 1.24, 95% CI 0.86 to 1.80, P = 0.25). Parkinsonian symptoms in particular tremor (64/739 versus 12/352; OR 2.71, 95% CI 1.44 to 5.09, P = 0.002), but not falls (P = 0.39), were reported more commonly in the treatment group but this did not have a significant impact on the UPDRS (total and motor) scores (P = 0.71). Fewer deaths occurred in the treatment group than in the placebo group (4/465 versus 9/279; OR 0.28, 95% CI 0.09 to 0.84, P = 0.03). Authors' conclusions - The currently available evidence supports the use of cholinesterase inhibitors in patients with PDD, with a positive impact on global assessment, cognitive function, behavioural disturbance and activities of daily living rating scales. The effect in DLB remains unclear. There is no current disaggregated evidence to support their use in CIND-PD.
Resumo:
The solubility of telmisartan (form A) in nine organic solvents (chloroform, dichloromethane, ethanol, toluene, benzene, 2-propanol, ethyl acetate, methanol and acetone) was determined by a laser monitoring technique at temperatures from 277.85 to 338.35 K. The solubility of telmisartan (form A) in all of the nine solvents increased with temperature as did the rates at which the solubility increased except in chloroform and dichloromethane. The mole fraction solubility in chloroform is higher than that in dichloromethane, which are both one order of magnitude higher than those in the other seven solvents at the experimental temperatures. The solubility data were correlated with the modified Apelblat equation and λh equations. The results show that the λh equation is in better agreement with the experimental data than the Apelblat equation. The relative root mean square deviations (σ) of the λh equation are in the range from 0.004 to 0.45 %. The dissolution enthalpies, entropies and Gibbs energies of telmisartan in these solvents were estimated by the Van’t Hoff equation and the Gibbs equation. The melting point and the fusion enthalpy of telmisartan were determined by differential scanning calorimetry.