2 resultados para 3-NUCLEON FORCES
em Aston University Research Archive
Resumo:
This paper proposes a semantic analysis of the French free-choice indefinite 'n’importe qui'. The semantics of the indefinite is organised as a ternary structure. The (1) abstract meaning underlies all uses of the item and acts as a principle of creative interpretation generation and comprehension. This principle is actualised via (2) discrete contextual features through to (3) contextual interpretations. Thus, the “existential” reading of 'n’importe qui' is derived by a veridical reading of the arbitrary selection of a qualitatively-marked occurrence from the set of human animates. The derivation of contextual readings from the enrichment by contextual cues of an underspecified meaning has a claim to an explanatory model of the semantics of grammatical polysemous items, and is certainly relevant to model-theoretic approaches in as much as formal semantic notions are intricately linked to the contextual interpretation of items. It is not 'n’importe qui' itself, but its contextual interpretations which may be weak or strong, and an homonymous treatment is not possible given the continuity of the quality and free-choice dimensions from one observed reading of n’importe qui to the next.
Resumo:
Cell exclusion is the phenomenon whereby the hematocrit and viscosity of blood decrease in areas of high stress. While this is well known in naturally occurring Poiseuille flow in the human body, it has never previously been shown in Couette flow, which occurs in implantable devices including blood pumps. The high-shear stresses that occur in the gap between the boundaries in Couette flow are known to cause hemolysis in erythrocytes. We propose to mitigate this damage by initiating cell exclusion through the use of a spiral-groove bearing (SGB) that will provide escape routes by which the cells may separate themselves from the plasma and the high stresses in the gap. The force between two bearings (one being the SGB) in Couette flow was measured. Stained erythrocytes, along with silver spheres of similar diameter to erythrocytes, were visualized across a transparent SGB at various gap heights. A reduction in the force across the bearing for human blood, compared with fluids of comparable viscosity, was found. This indicates a reduction in the viscosity of the fluid across the bearing due to a lowered hematocrit because of cell exclusion. The corresponding images clearly show both cells and spheres being excluded from the gap by entering the grooves. This is the first time the phenomenon of cell exclusion has been shown in Couette flow. It not only furthers our understanding of how blood responds to different flows but could also lead to improvements in the future design of medical devices.