15 resultados para 260603 Ionospheric and Magnetospheric Physics

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modem digital communication systems are made transmission reliable by employing error correction technique for the redundancies. Codes in the low-density parity-check work along the principles of Hamming code, and the parity-check matrix is very sparse, and multiple errors can be corrected. The sparseness of the matrix allows for the decoding process to be carried out by probability propagation methods similar to those employed in Turbo codes. The relation between spin systems in statistical physics and digital error correcting codes is based on the existence of a simple isomorphism between the additive Boolean group and the multiplicative binary group. Shannon proved general results on the natural limits of compression and error-correction by setting up the framework known as information theory. Error-correction codes are based on mapping the original space of words onto a higher dimensional space in such a way that the typical distance between encoded words increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear systems with periodic variations of nonlinearity and/or dispersion occur in a variety of physical problems and engineering applications. The mathematical concept of dispersion managed solitons already has made an impact on the development of fibre communications, optical signal processing and laser science. We overview here the field of the dispersion managed solitons starting from mathematical theories of Hamiltonian and dissipative systems and then discuss recent advances in practical implementation of this concept in fibre-optics and lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Networking encompasses a variety of tasks related to the communication of information on networks; it has a substantial economic and societal impact on a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption requires new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with nonlinear large-scale systems. This review aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications. © 2013 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is proposed that convection driven dynamos operating in planetary cores could be oscillatory even when the oscillations are not directly noticeable from the outside. Examples of dynamo simulations are pointed out that exhibit oscillations in the structure of the azimuthally averaged toroidal magnetic flux while the mean poloidal field shows only variations in its amplitude. In the case of the geomagnetic field, global excursions may be associated with these oscillations. Long period dynamo simulations indicate that the oscillations may cause reversals once in a while. No special attempt has been made to use most realistic parameter values. Nevertheless some similarities between the simulations and the paleomagnetic record can be pointed out. Crown Copyright © 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation originated from work by Dr. A.H. McIlraith of the National Physical Laboratory who, in 1966, described a new type of charged particle oscillator. This makes use of two equal cylindrical electrodes to constrain the particles in such a way that they follow extremely long oscillatory paths between the electrodes under the influence of an electrostatic field alone. The object of this work has been to study the principle of the oscillator in detail and to investigate its properties and applications. Any device which is capable of creating long electron trajectories has potential application in the field of ultra high vacuum technology. It was therefore considered that a critical review of the problems associated with the production and measurement of ultra high vacuum was relevant in the initial stages of the work. The oscillator has been applied with a considerable degree of success as a high energy electrostatic ion source. This offers several advantages over existing ion sources. It can be operated at much lower pressures without the need of a magnetic field. The oscillator principle has also been applied as a thermionic ionization gauge and has been compared with other ionization gauges to pressures as low as 5 x 10- 11 torr.. This new gauge exhibited a number of advantages over most of the existing gauges. Finally the oscillator has been used in an evaporation ion pump and has exhibited fairly high pumping speeds for argon gas relative to those for nitrogen. This investigation supports the original work of Dr. A.H. McIlraith and shows that his proposed oscillator has considerable potential in the fields of vacuum technology and electron physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear systems with periodic variations of nonlinearity and/or dispersion occur in a variety of physical problems and engineering applications. The mathematical concept of dispersion managed solitons already has made an impact on the development of fibre communications, optical signal processing and laser science. We overview here the field of the dispersion managed solitons starting from mathematical theories of Hamiltonian and dissipative systems and then discuss recent advances in practical implementation of this concept in fibre-optics and lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibration treatment by oscillating platforms is more and more employed in the fields of exercise physiology and bone research. The rationale of this treatment is based on the neuromuscular system response elicited by vibration loads. surface Electromyography (EMG) is largely utilized to assess muscular response elicited by vibrations and Root Mean Square of the electromyography signals is often used as a concise quantitative index of muscle activity; in general, EMG envelope or RMS is expected to increase during vibration. However, it is well known that during surface bio-potential recording, motion artifacts may arise from relative motion between electrodes and skin and between skin layers. Also the only skin stretch, modifying the internal charge distribution, results in a variation of electrode potential. The aim of this study is to highlight the movements of muscles, and the succeeding relevance of motion artifacts on electrodes, in subjects undergoing vibration treatments. EMGs from quadriceps of fifteen subjects were recorded during vibration at different frequencies (15-40 Hz); Triaxial accelerometers were placed onto quadriceps, as close as possible to muscle belly, to monitor motion. The computed muscle belly displacements showed a peculiar behavior reflecting the mechanical properties of the structures involved. Motion artifact related to the impressed vibration have been recognized and related to movement of the soft tissues. In fact large artifacts are visible on EMGs and patellar electrodes recordings during vibration. Signals spectra also revealed sharp peaks corresponding to vibration frequency and its harmonics, in accordance with accelerometers data. © 2008 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze pulse propagation in an optical fiber with a periodic dispersion map and distributed amplification. Using an asymptotic theory and a momentum method, we identify a family of dispersion management schemes that are advantageous for massive multichannel soliton transmission. For the case of two-step dispersion maps with distributed Raman amplification to compensate for the fiber loss, we find special schemes that have optimal (chirp-free) launch point locations that are independent of the fiber dispersion. Despite the variation of dispersion with wavelength due to the fiber dispersion slope, the transmission in several different channels can be optimized simultaneously using the same optimal launch point. The theoretical predictions are verified by direct numerical simulations. The obtained results are applied to a practical multichannel transmission system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the steady-state propagation of optical pulses in fiber transmission systems with lumped nonlinear optical devices (NODs) placed periodically in the line. For the first time to our knowledge, a theoretical model is developed to describe the transmission regime with a quasilinear pulse evolution along the transmission line and the point action of NODs. We formulate the mapping problem for pulse propagation in a unit cell of the line and show that in the particular application to nonlinear optical loop mirrors, the steady-state pulse characteristics predicted by the theory accurately reproduce the results of direct numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study solutions of the nonlinear Schrödinger equation (NLSE) with gain, describing optical pulse propagation in an amplifying medium. We construct a semiclassical self-similar solution with a parabolic temporal variation that corresponds to the energy-containing core of the asymptotically propagating pulse in the amplifying medium. We match the self-similar core through Painlevé functions to the solution of the linearized equation that corresponds to the low-amplitude tails of the pulse. The analytic solution accurately reproduces the numerically calculated solution of the NLSE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The noise properties of supercontinuum generation continue to be a subject of wide interest within both pure and applied physics. Aside from immediate applications in supercontinuum source development, detailed studies of supercontinuum noise mechanisms have attracted interdisciplinary attention because of links with extreme instabilities in other physical systems, especially the infamous and destructive oceanic rogue waves. But the instabilities inherent in supercontinuum generation can also be interpreted in terms of natural links with the general field of random processes, and this raises new possibilities for applications in areas such as random number generation. In this contribution we will describe recent work where we interpret supercontinuum intensity and phase fluctuations in this way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study solutions of the nonlinear Schrödinger equation (NLSE) with gain, describing optical pulse propagation in an amplifying medium. We construct a semiclassical self-similar solution with a parabolic temporal variation that corresponds to the energy-containing core of the asymptotically propagating pulse in the amplifying medium. We match the self-similar core through Painlevé functions to the solution of the linearized equation that corresponds to the low-amplitude tails of the pulse. The analytic solution accurately reproduces the numerically calculated solution of the NLSE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the steady-state propagation of optical pulses in fiber transmission systems with lumped nonlinear optical devices (NODs) placed periodically in the line. For the first time to our knowledge, a theoretical model is developed to describe the transmission regime with a quasilinear pulse evolution along the transmission line and the point action of NODs. We formulate the mapping problem for pulse propagation in a unit cell of the line and show that in the particular application to nonlinear optical loop mirrors, the steady-state pulse characteristics predicted by the theory accurately reproduce the results of direct numerical simulations. © 2005 Springer Science+Business Media, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congenital nystagmus (CN) is an ocular-motor disorder that appears at birth or during the first few months of life; it is characterised by involuntary, conjugated, bilateral to and fro ocular oscillations. Pathogenesis of congenital nystagmus is still unknown. Eye movement recording allow to extract and analyse nystagmus main features such as shape, amplitude and frequency; depending on the morphology of the oscillations nystagmus can be classified in different categories (pendular, jerk, horizontal unidirectional, bidirectional). In general, CN patient show a considerable decrease of the visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations; however, image stabilisation is still achieved during the short foveation periods in which eye velocity slows down while the target image is placed onto the fovea. Visual acuity was found to be mainly dependent on foveation periods duration, but cycle-to-cycle foveation repeatability and reduction of retinal image velocities also contribute in increasing visual acuity. This study concentrate on cycle-to-cycle image position variation onto fovea, trying to characterise the sequences of foveation positions. Eye-movement (infrared oculographic or electro oculographic) recordings, relative to different gaze positions and belonging to more than 30 CN patients, were analysed. Preliminary results suggest that sequences of foveations show a cyclic pattern with a dominant frequency (around 0.3 Hz on average) much lower than that of the nystagmus (about 3.3 Hz on average). Sequences of foveations reveals an horizontal ocular swing of more than 2 degree on average, which can explain the low visual acuity of the CN patient. Current CN therapies, pharmacological treatment or surgery of the ocular muscles, mainly aim to increase the patient's visual acuity. Hence, it is fundamental to have an objective parameter (expected visual acuity) for therapy planning. The information about sequences of foveations can improve estimation of patient visual acuity. © 2008 Springer-Verlag.