21 resultados para 240501 Acoustics and Acoustical Devices
em Aston University Research Archive
Resumo:
This thesis is concerned with the optimising of hearing protector selection. A computer model was used to estimate the reduction in noise exposure and risk of occupational deafness provided by the wearing of hearing protectors in industrial noise spectra. The model was used to show that low attenuation hearing protectors con provide greater protection than high attenuation protectors if the high attenuation protectors ore not worn for the total duration of noise exposure; or not used by a small proportion of the population. The model was also used to show that high attenuation protectors will not necessarily provide significantly greater reduction in risk than low attenuation protectors if the population has been exposed to the noise for many years prior to the provision of hearing protectors. The effects of earplugs and earmuffs on the localisation of sounds were studied to determine whether high attenuation earmuffs are likely to have greater potential than the lower attenuation earplugs for affecting personal safety. Laboratory studies and experiments at a foundry with normal-hearing office employees and noise-exposed foundrymen who had some experience of wearing hearing protectors showed that although earplugs reduced the ability of the wearer to determine the direction of warning sounds, earmuffs produced more total angular error and more confusions between left and right. !t is concluded from the research findings that the key to the selection of hearing protectors is to be found in the provision of hearing protectors that can be worn for a very high percentage of the exposure time by a high percentage of the exposed population with the minimum effect on the personal safety of the wearers - the attenuation provided by the protection should be adequate but not a maximum value.
Resumo:
To date, much of the development work associated with polymer optical fibre (POF) applications has been aimed at exploiting the potential of the technology to provide low cost solutions. Here we argue that, in the sensing area at least, POF offers a number of other, more relevant advantages. In this paper we describe work on a range of devices based on photoinscribed gratings and on fibre interferometers, which are designed to take advantage of the unique properties of POF.
Resumo:
Human-computer interaction is a growing field of study in which researchers and professionals aim to understand and evaluate the impact of new technologies on human behavior. With the integration of smart phones, tablets, and other portable devices into everyday life, there is a greater need to understand the influence of such technology on the human experience. Emerging Perspectives on the Design, Use, and Evaluation of Mobile and Handheld Devices is an authoritative reference source consisting of the latest scholarly research and theories from international experts and professionals on the topic of human-computer interaction with mobile devices. Featuring a comprehensive collection of chapters on critical topics in this dynamic field, this publication is an essential reference source for researchers, educators, students, and practitioners interested in the use of mobile and handheld devices and their impact on individuals and society as a whole. This publication features timely, research-based chapters pertaining to topics in the design and evaluation of smart devices including, but not limited to, app stores, category-based interfaces, gamified mobility applications, mobile interaction, mobile learning, pervasive multimodal applications, smartphone interaction, and social media use.
Resumo:
This thesis has focused on three key areas of interest for femtosecond micromachining and inscription. The first area is micromachining where the work has focused on the ability to process highly repeatable, high precision machining with often extremely complex geometrical structures with little or no damage. High aspect ratio features have been demonstrated in transparent materials, metals and ceramics. Etch depth control was demonstrated especially in the work on phase mask fabrication. Practical chemical sensing and microfluidic devices were also fabricated to demonstrate the capability of the techniques developed during this work. The second area is femtosecond inscription. Here, the work has utilised the non-linear absorption mechanisms associated with femtosecond pulse-material interactions to create highly localised refractive index changes in transparent materials to create complex 3D structures. The techniques employed were then utilised in the fabrication of Phase masks and Optical Coherence Tomography (OCT) phantom calibration artefacts both of which show the potential to fill voids in the development of the fields. This especially the case for the OCT phantoms where there exists no previous artefacts of known shape, allowing for the initial specification of parameters associated with the quality of OCT machines that are being taken up across the world in industry and research. Finally the third area of focus was the combination of all of the techniques developed through work in planar samples to create a range of artefacts in optical fibres. The development of techniques and methods for compensating for the geometrical complexities associated with working with the cylindrical samples with varying refractive indices allowed for fundamental inscription parameters to be examined, structures for use as power monitors and polarisers with the optical fibres and finally the combination of femtosecond inscription and ablation techniques to create a magnetic field sensor with an optical fibre coated in Terfenol-D with directional capability. Through the development of understanding, practical techniques and equipment the work presented here demonstrates several novel pieces of research in the field of femtosecond micromachining and inscription that has provided a broad range of related fields with practical devices that were previously unavailable or that would take great cost and time to facilitate.
Resumo:
The current optical communications network consists of point-to-point optical transmission paths interconnected with relatively low-speed electronic switching and routing devices. As the demand for capacity increases, then higher speed electronic devices will become necessary. It is however hard to realise electronic chip-sets above 10 Gbit/s, and therefore to increase the achievable performance of the network, electro-optic and all-optic switching and routing architectures are being investigated. This thesis aims to provide a detailed experimental analysis of high-speed optical processing within an optical time division multiplexed (OTDM) network node. This includes the functions of demultiplexing, 'drop and insert' multiplexing, data regeneration, and clock recovery. It examines the possibilities of combining these tasks using a single device. Two optical switching technologies are explored. The first is an all-optical device known as 'semiconductor optical amplifier-based nonlinear optical loop mirror' (SOA-NOLM). Switching is achieved by using an intense 'control' pulse to induce a phase shift in a low-intensity signal propagating through an interferometer. Simultaneous demultiplexing, data regeneration and clock recovery are demonstrated for the first time using a single SOA-NOLM. The second device is an electroabsorption (EA) modulator, which until this thesis had been used in a uni-directional configuration to achieve picosecond pulse generation, data encoding, demultiplexing, and 'drop and insert' multiplexing. This thesis presents results on the use of an EA modulator in a novel bi-directional configuration. Two independent channels are demultiplexed from a high-speed OTDM data stream using a single device. Simultaneous demultiplexing with stable, ultra-low jitter clock recovery is demonstrated, and then used in a self-contained 40 Gbit/s 'drop and insert' node. Finally, a 10 GHz source is analysed that exploits the EA modulator bi-directionality to increase the pulse extinction ratio to a level where it could be used in an 80 Gbit/s OTDM network.
Resumo:
Three experiments investigated the dynamics of auditory stream segregation. Experiment 1 used a 2.0-s constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence reduced reported test-sequence segregation substantially. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets buildup, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only 3 tone cycles - this contrasts with the more gradual build-up typically observed for alternating sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ∼10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an on-going, pre-established stream and that a deviant tone may reduce segregation by disrupting this capture. © 2013 Acoustical Society of America.
Resumo:
A system for the NDI' testing of the integrity of conposite materials and of adhesive bonds has been developed to meet industrial requirements. The vibration techniques used were found to be applicable to the development of fluid measuring transducers. The vibrational spectra of thin rectangular bars were used for the NDT work. A machined cut in a bar had a significant effect on the spectrum but a genuine crack gave an unambiguous response at high amplitudes. This was the generation of fretting crack noise at frequencies far above that of the drive. A specially designed vibrational decrement meter which, in effect, measures mechanical energy loss enabled a numerical classification of material adhesion to be obtained. This was used to study bars which had been flame or plasma sprayed with a variety of materials. It has become a useful tool in optimising coating methods. A direct industrial application was to classify piston rings of high performance I.C. engines. Each consists of a cast iron ring with a channel into which molybdenum, a good bearing surface, is sprayed. The NDT classification agreed quite well with the destructive test normally used. The techniques and equipment used for the NOT work were applied to the development of the tuning fork transducers investigated by Hassan into commercial density and viscosity devices. Using narrowly spaced, large area tines a thin lamina of fluid is trapped between them. It stores a large fraction of the vibrational energy which, acting as an inertia load reduces the frequency. Magnetostrictive and piezoelectric effects together or in combination enable the fork to be operated through a flange. This allows it to be used in pipeline or 'dipstick' applications. Using a different tine geometry the viscosity loading can be predoninant. This as well as the signal decrement of the density transducer makes a practical viscometer.
Resumo:
Currently over 50 million people worldwide wear contact lenses, of which over 75% wear hydrogel lenses. Significant deposition occurs in approximately 80% of hydrogel lenses and many contact lens wearers cease wearing lenses due to problems associated with deposition. The contact lens field is not alone in encountering complications associated with interactions between the body and artificial devices. The widespread use of man-made materials to replace structures in the body has emphasised the importance of studies that examine the interactions between implantation materials and body tissues.This project used carefully controlled, randomized clinical studies to study the interactive effects of contact lens materials, care systems, replacement periods and patient differences. Of principal interest was the influence of these factors on material deposition and their subsequent impact on subjective performance. A range of novel and established analytical techniques were used to examine hydrogel lenses following carefully controlled clinical studies in which clinical performance was meticulously monitored. These studies established the inter-relationship between clinical performance and deposition to be evaluated. This project showed that significant differences exist between individuals in their ability to deposit hydrogel lenses, with approximately 20% of subjects displaying significant deposition irrespective of the lens material. Additionally, materials traditionally categorised together show markedly different spoilation characteristics, which are wholly attributable to their detailed chemical structure. For the first time the in vivo deposition kinetics of both protein and lipid in charged and uncharged polymers was demonstrated. In addition the importance of care systems in the deposition process was shown, clearly demonstrating the significance of the quality rather than the quantity of deposition in influencing subjective performance.
Resumo:
This thesis is organised into three parts. In Part 1 relevant literature is reviewed and three critical components in the development of a cognitive approach to instruction are identified. These three components are considered to be the structure of the subject-matter, the learner's cognitive structures, and the learner's cognitive strategies which act as control and transfer devices between the instructional materials and the learner's cognitive structures. Six experiments are described in Part 2 which is divided into two methodologically distinct units. The three experiments of Unit 1 examined how learning from materials constructed from concept name by concept attribute matrices is influenced by learner or experimenter controlled sequence and organisation. The results suggested that the relationships between input organisation, output organisation and recall are complex and highlighted the importance of investigating organisational strategies at both acquisition and recall. The role of subjects previously acquired knowledge and skills in relation to the instructional material was considered to be an important factor. The three experiments of Unit 2 utilised a "diagramming relationships methodology" which was devised as one means of investigating the processes by which new information is assimilated into an individual's cognitive structure. The methodology was found to be useful in identifying cognitive strategies related to successful task performance. The results suggested that errors could be minimised and comprehension improved on the diagramming relationships task by instructing subjects in ways which induced successful processing operations. Part 3 of this thesis highlights salient issues raised by the experimental work within the framework outlined in Part 1 and discusses potential implications for future theoretical developments and research.
Resumo:
As technology and medical devices improve, there is much interest in when and how astigmatism should be corrected with refractive surgery. Astigmatism can be corrected by most forms of refractive surgery, such as using excimer lasers algorithms to ablate the cornea to compensate for the magnitude of refractive error in different meridians. Correction of astigmatism at the time of cataract surgery is well developed and can be achieved through incision placement, relaxing incisions and toric intraocular lens (IOL) implantation. This was less of an issue in the past when there was a lower expectation to be spectacle independent after cataract surgery, in which case the residual refractive error, including astigmatism, could be compensated for with spectacle lenses. The issue of whether presurgical astigmatism should be corrected can be considered separately depending on whether a patient has residual accommodation, and the type of refractive surgery under consideration. We have previously reported on the visual impact of full correction of astigmatism, rather than just correcting the mean spherical equivalent. Correction of astigmatism as low as 1.00 dioptres significantly improves objective and subjective measures of functional vision in prepresbyopes at distance and near.
Resumo:
Desktop user interface design originates from the fact that users are stationary and can devote all of their visual resource to the application with which they are interacting. In contrast, users of mobile and wearable devices are typically in motion whilst using their device which means that they cannot devote all or any of their visual resource to interaction with the mobile application -- it must remain with the primary task, often for safety reasons. Additionally, such devices have limited screen real estate and traditional input and output capabilities are generally restricted. Consequently, if we are to develop effective applications for use on mobile or wearable technology, we must embrace a paradigm shift with respect to the interaction techniques we employ for communication with such devices.This paper discusses why it is necessary to embrace a paradigm shift in terms of interaction techniques for mobile technology and presents two novel multimodal interaction techniques which are effective alternatives to traditional, visual-centric interface designs on mobile devices as empirical examples of the potential to achieve this shift.
Resumo:
Mobile communication and networking infrastructures play an important role in the development of smart cities, to support real-time information exchange and management required in modern urbanization. Mobile WiFi devices that help offloading data traffic from the macro-cell base station and serve the end users within a closer range can significantly improve the connectivity of wireless communications between essential components including infrastructural and human devices in a city. However, this offloading function through interworking between LTE and WiFi systems will change the pattern of resource distributions operated by the base station. In this paper, a resource allocation scheme is proposed to ensure stable service coverage and end-user quality of experience (QoE) when offloading takes place in a macro-cell environment. In this scheme, a rate redistribution algorithm is derived to form a parametric scheduler to meet the required levels of efficiency and fairness, guided by a no-reference quality assessment metric. We show that the performance of resource allocation can be regulated by this scheduler without affecting the service coverage offered by the WLAN access point. The performances of different interworking scenarios and macro-cell scheduling policies are also compared.
Resumo:
This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.
Resumo:
Microporous polycaprolactone (PCL) matrices loaded with hydrophobic steroidal drugs or a hydrophilic drug - pilocarpine hydrochloride - were produced by precipitation casting using solutions of PCL in acetone. The efficiency of steroid incorporation in the final matrix (progesterone (56 %) testosterone (46 %) dexamethasone (80 %)) depended on the nature of the drug initially co-dissolved in the PCL solution. Approximately 90 % w/w of the initial load of progesterone, 85 % testosterone and 50 % dexamethasone was released from the matrices in PBS at 37°C over 8 days. Pilocarpine hydrochloride (PH)-loaded PCL matrices, prepared by dispersion of powder in PCL solution, released 70-90 % of the PH content over 12 days in PBS. Application of the Higuchi model revealed that the kinetics of steroid and PH release were consistent with a Fickian diffusion mechanism with corresponding diffusion coefficients of 5.8 × 10-9 (progesterone), 3.9 × 10 -9 (testosterone), 7.1 × 10-10 (dexamethasone) and 22 × 10-8 cm2/s (pilocarpine hydrochloride). The formulation techniques described are expected to be useful for production of implantable, insertable and topical devices for sustained delivery of a range of bioactive molecules of interest in drug delivery and tissue engineering.
Resumo:
An investigation has been undertaken into the effects of various radiations on commercially made Al-SiO2-Si Capacitors (MOSCs). Detailed studies of the electrical and physical nature of such devices have been used to characterise both virgin and irradiated devices. In particular, an investigation of the nature and causes of dielectric breakdown in MOSCs has revealed that intrinsic breakdown is a two-stage process dominated by charge injection in a pre-breakdown stage; this is associated with localised high-field injection of carriers from the semiconductor substrate to interfacial and bulk charge traps which, it is proposed, leads to the formation of conducting channels through the dielectric with breakdown occurring as a result of the dissipation of the conduction band energy. A study of radiation-induced dielectric breakdown has revealed the possibility of anomalous hot-electron injection to an excess of bulk oxide traps in the ionization channel produced by very heavily ionizing radiation, which leads to intrinsic breakdown in high-field stressed devices. These findings are interpreted in terms of a modification to the model for radiation-induced dielectric breakdown based upon the primary dependence of breakdown on charge injection rather than high-field mechanisms. The results of a detailed investigation of charge trapping and interface state generation in such MOSCs due to various radiations has revealed evidence of neutron induced interface states, and of the generation of positive oxide charge in devices due to all of the radiations tested. In particular, the greater the linear energy transfer of the radiation, the greater the magnitude of charge trapped in the oxide and the greater the number of interface states generated. These findings are interpreted in terms of Si-H and Si-OH bond-breaking at the Si-SiO2 interface which is enhanced by charge carrier transfer to the interface and by anomalous charge injection to compensate for the excess of charge carriers created by the radiation.