5 resultados para 240-2

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Longitudinal librations represent oscillations about the axis of a rotating axisymmetric fluid filled cavity. An analytical theory is developed for the case of a cylindrical cavity in the limit when the libration frequency is small in comparison with the rotation rate, but large in comparison with the inverse of the spin-up time. It is shown that through the nonlinear advection in the Ekman layers the librations cause the fluid to rotate more slowly. © 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims - A common variant, rs9939609, in the FTO (fat mass and obesity) gene is associated with adiposity in Europeans, explaining its relationship with diabetes. However, data are inconsistent in South Asians. Our aim was to investigate the association of the FTO rs9939609 variant with obesity, obesity-related traits and Type 2 diabetes in South Asian individuals, and to use meta-analyses to attempt to clarify to what extent BMI influences the association of FTO variants with diabetes in South Asians. Methods - We analysed rs9939609 in two studies of Pakistani individuals: 1666 adults aged = 40 years from the Karachi population-based Control of Blood Pressure and Risk Attenuation (COBRA) study and 2745 individuals of Punjabi ancestry who were part of a Type 2 diabetes case–control study (UK Asian Diabetes Study/Diabetes Genetics in Pakistan; UKADS/DGP). The main outcomes were BMI, waist circumference and diabetes. Regression analyses were performed to determine associations between FTO alleles and outcomes. Summary estimates were combined in a meta-analysis of 8091 South Asian individuals (3919 patients with Type 2 diabetes and 4172 control subjects), including those from two previous studies. Results - In the 4411 Pakistani individuals from this study, the age-, sex- and diabetes-adjusted association of FTO variant rs9939609 with BMI was 0.45 (95% CI 0.24–0.67) kg/m2 per A-allele (P = 3.0 × 10-5) and with waist circumference was 0.88 (95% CI 0.36–1.41) cm per A-allele (P = 0.001). The A-allele (30% frequency) was also significantly associated with Type 2 diabetes [per A-allele odds ratio (95% CI) 1.18 (1.07–1.30); P = 0.0009]. A meta-analysis of four South Asian studies with 8091 subjects showed that the FTO A-allele predisposes to Type 2 diabetes [1.22 (95% CI 1.14–1.31); P = 1.07 × 10-8] even after adjusting for BMI [1.18 (95% CI 1.10–1.27); P = 1.02 × 10-5] or waist circumference [1.18 (95% CI 1.10–1.27); P = 3.97 × 10-5]. Conclusions - The strong association between FTO genotype and BMI and waist circumference in South Asians is similar to that observed in Europeans. In contrast, the strong association of FTO genotype with diabetes is only partly accounted for by BMI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal decomposition behavior of 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE) widely used as flame retardant plastics additive was studied by HRTG and differential scanning calorimetries. It was pyrolysed in inert atmosphere at 240 and 340 °C in isothermal conditions, the decomposition products were collected and investigated by means of IR and GC-MS, most of them are identified. It was found that BTBPE mostly evaporates at 240 °C. The decomposition products at 340°C depend on rate of their removal from the hot reaction zone. Main primary decomposition products found in case of rapid removal are tribromophenol and vinyl tribromophenyl ether. Whereas, prolonged contact with heating zone also produces hydrogen bromide, ethylene bromide, polybrominated vinyl phenyl ethers and diphenyl ethers, and dibenzodioxins. The nature of the identified compounds are in accordance with a molecular and radical pyrolysis reaction pathway. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

57Fe Mössbauer spectroscopy of the mononuclear [Fe(II)(isoxazole)6](BF4) 2compound has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S = 0) and high-spin (S = 2) states. A temperature-dependent spin transition curve has been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures in the 240-60K range during the cooling and heating cycle. The compound exhibits a temperature-dependent two-step spin transition phenomenon with Tsco (step 1) = 92 and Tsco (step2) = 191K. The compound has three high-spin Fe(II) sites at the highest temperature of study; among them, two have slightly different coordination environments. These two Fe(II) sites are found to undergo a spin transition, while the third Fe(II) site retains the high-spin state over the whole temperature range. Possible reasons for the formation of the two steps in the spin transition curve are discussed. The observations made from the present study are in complete agreement with those envisaged from earlier magnetic and structural studies made on [Fe(II)(isoxazole)6](BF4)2, but highlights the nature of the spin crossover mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the high-energy flat-top supercontinuum covering the mid-infrared wavelength range of 1.9-2.5 μm as well as electronically tunable femtosecond pulses between 1.98-2.22 μm directly from the thulium-doped fiber laser amplifier. Comparison of experimental results with numerical simulations confirms that both sources employ the same nonlinear optical mechanism - Raman soliton frequency shift occurring inside the Tm-fiber amplifier. To illustrate that, we investigate two versions of the compact diode-pumped SESAM mode-locked femtosecond thulium-doped all-silica-fiber-based laser system providing either broadband supercontinuum or tunable Raman soliton output, depending on the parameters of the system. The first system operates in the Raman soliton regime providing femtosecond pulses tunable between 1.98-2.22 μm. Wide and continuous spectral tunability over 240 nm was realized by changing only the amplifier pump diode current. The second system generates high-energy supercontinuum with the superior spectral flatness of better than 1 dB covering the wavelength range of 1.9-2.5 μm, with the total output energy as high as 0.284 μJ, the average power of 2.1 W at 7.5 MHz repetition rate. We simulate the amplifier operation in the Raman soliton self-frequency shift regime and discuss the role of induced Raman scattering in supercontinuum formation inside the fiber amplifier. We compare this system with a more traditional 1.85-2.53 μm supercontinuum source in the external highly-nonlinear commercial chalcogenide fiber using the Raman soliton MOPA as an excitation source. The reported systems1 can be readily applied to a number of industrial applications in the mid-IR, including sensing, stand-off detection, medical surgery and fine material processing.