8 resultados para 230112 Topology and Manifolds

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Battery energy storage systems have traditionally been manufactured using new batteries with a good reliability. The high cost of such a system has led to investigations of using second life transportation batteries to provide an alternative energy storage capability. However, the reliability and performance of these batteries is unclear and multi-modular power electronics with redundancy have been suggested as a means of helping with this issue. This paper reviews work already undertaken on battery failure rate to suggest suitable figures for use in reliability calculations. The paper then uses reliability analysis and a numerical example to investigate six different multi-modular topologies and suggests how the number of series battery strings and power electronic module redundancy should be determined for the lowest hardware cost using a numerical example. The results reveal that the cascaded dc-side modular with single inverter is the lowest cost solution for a range of battery failure rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of distributed computer systems with a largely transparent user interface, new questions have arisen regarding the management of such an environment by an operating system. One fertile area of research is that of load balancing, which attempts to improve system performance by redistributing the workload submitted to the system by the users. Early work in this field concentrated on static placement of computational objects to improve performance, given prior knowledge of process behaviour. More recently this has evolved into studying dynamic load balancing with process migration, thus allowing the system to adapt to varying loads. In this thesis, we describe a simulated system which facilitates experimentation with various load balancing algorithms. The system runs under UNIX and provides functions for user processes to communicate through software ports; processes reside on simulated homogeneous processors, connected by a user-specified topology, and a mechanism is included to allow migration of a process from one processor to another. We present the results of a study of adaptive load balancing algorithms, conducted using the aforementioned simulated system, under varying conditions; these results show the relative merits of different approaches to the load balancing problem, and we analyse the trade-offs between them. Following from this study, we present further novel modifications to suggested algorithms, and show their effects on system performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More-electric vehicle technology is becoming prevalent in a number of transportation systems because of its ability to improve efficiency and reduce costs. This paper examines the specific case of an Uninhabited Autonomous Vehicle (UAV), and the system topology and control elements required to achieve adequate dc distribution voltage bus regulation. Voltage control methods are investigated and a droop control scheme is implemented on the system. Simulation results are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal paths connecting randomly selected network nodes and fixed routers are studied analytically in the presence of a nonlinear overlap cost that penalizes congestion. Routing becomes more difficult as the number of selected nodes increases and exhibits ergodicity breaking in the case of multiple routers. The ground state of such systems reveals nonmonotonic complex behaviors in average path length and algorithmic convergence, depending on the network topology, and densities of communicating nodes and routers. A distributed linearly scalable routing algorithm is also devised. © 2012 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To fully utilize second-life batteries on the grid system, a hybrid battery scheme needs to be considered for several reasons: the uncertainty over using a single source supply chain for second-life batteries, the differences in evolving battery chemistry and battery configuration by different suppliers to strive for greater power levels, and the uncertainty of degradation within a second-life battery. Therefore, these hybrid battery systems could have widely different module voltage, capacity, and initial state of charge and state of health. In order to suitably integrate and control these widely different batteries, a suitable multimodular converter topology and an associated control structure are required. This paper addresses these issues proposing a modular boost-multilevel buck converter based topology to integrate these hybrid second-life batteries to a grid-tie inverter. Thereafter, a suitable module-based distributed control architecture is introduced to independently utilize each converter module according to its characteristics. The proposed converter and control architecture are found to be flexible enough to integrate widely different batteries to an inverter dc link. Modeling, analysis, and experimental validation are performed on a single-phase modular hybrid battery energy storage system prototype to understand the operation of the control strategy with different hybrid battery configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane proteins, which constitute approximately 20% of most genomes, are poorly tractable targets for experimental structure determination, thus analysis by prediction and modelling makes an important contribution to their on-going study. Membrane proteins form two main classes: alpha helical and beta barrel trans-membrane proteins. By using a method based on Bayesian Networks, which provides a flexible and powerful framework for statistical inference, we addressed alpha-helical topology prediction. This method has accuracies of 77.4% for prokaryotic proteins and 61.4% for eukaryotic proteins. The method described here represents an important advance in the computational determination of membrane protein topology and offers a useful, and complementary, tool for the analysis of membrane proteins for a range of applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter discusses network protection of high-voltage direct current (HVDC) transmission systems for large-scale offshore wind farms where the HVDC system utilizes voltage-source converters. The multi-terminal HVDC network topology and protection allocation and configuration are discussed with DC circuit breaker and protection relay configurations studied for different fault conditions. A detailed protection scheme is designed with a solution that does not require relay communication. Advanced understanding of protection system design and operation is necessary for reliable and safe operation of the meshed HVDC system under fault conditions. Meshed-HVDC systems are important as they will be used to interconnect large-scale offshore wind generation projects. Offshore wind generation is growing rapidly and offers a means of securing energy supply and addressing emissions targets whilst minimising community impacts. There are ambitious plans concerning such projects in Europe and in the Asia-Pacific region which will all require a reliable yet economic system to generate, collect, and transmit electrical power from renewable resources. Collective offshore wind farms are efficient and have potential as a significant low-carbon energy source. However, this requires a reliable collection and transmission system. Offshore wind power generation is a relatively new area and lacks systematic analysis of faults and associated operational experience to enhance further development. Appropriate fault protection schemes are required and this chapter highlights the process of developing and assessing such schemes. The chapter illustrates the basic meshed topology, identifies the need for distance evaluation, and appropriate cable models, then details the design and operation of the protection scheme with simulation results used to illustrate operation. © Springer Science+Business Media Singapore 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Switched reluctance motors (SRMs) can provide an attractive traction drive for electric vehicle applications. To lower the investment in the off-board charging station facilities, a multi-functional switched reluctance motor topology is proposed on the basis of the traditional asymmetrical half-bridge converter. The SRM phase windings are employed as input filter inductors and centre-tapped windings are also developed to form symmetrical inductors for three-phase grid supply. Owing to the varying rotor position, phase inductors are unequal between one another. A hysteresis control scheme is therefore developed for grid-connection operation. In addition to AC supplies, the proposed topology can also supports the DC-source charging. A new current sharing strategy is employed to diminish the influence of the unequal winding inductances. The simulation and experimental tests are carried out to verify the proposed topology and control methods. Since this work eliminates the need for building charging station infrastructure, its potential economic impact on the automotive market can be significant.