8 resultados para 20-GC 2
em Aston University Research Archive
Resumo:
Aim: To determine the impact of periodontitis on oxidative/inflammatory status and diabetes control in Type 2 diabetes. Materials and Methods: A comparative study of 20 Type 2 diabetes patients with periodontitis [body mass index (BMI) 31+5], 20-age/gender-matched, non-periodontitis Type 2 diabetes controls (BMI 29+6) and 20 non-diabetes periodontitis controls (BMI 25+4) had periodontal examinations and fasting blood samples collected. Oxidative stress was determined by plasma small molecule antioxidant capacity (pSMAC) and protein carbonyl levels; inflammatory status by total/differential leucocytes, fibrinogen and high sensitivity C-reactive protein (hsCRP); diabetes status by fasting glucose, HbA1c, lipid profile, insulin resistance and secretion. Statistical analysis was performed using SPSS. Results: pSMAC was lower (p=0.03) and protein carbonyls higher (p=0.007) in Type 2 diabetes patients with periodontitis compared with those without periodontitis. Periodontitis was associated with significantly higher HbA1c (p=0.002) and fasting glucose levels (p=0.04) and with lower ß-cell function (HOMA-ß; p=0.01) in diabetes patients. Periodontitis had little effect on inflammatory markers or lipid profiles, but Type 2 diabetes patients with periodontitis had higher levels of hsCRP than those without diabetes (p=0.004) and the lowest levels of HDL-cholesterol of all groups. Conclusion: Periodontitis is associated with increased oxidative stress and compromised glycaemic control in Type 2 diabetes patients.
Resumo:
Peroxiredoxin-2 (PRDX-2) belongs to a family of thiol containing proteins and is important for antioxidant defense, redox signaling and cell function. This study examined whether lymphocyte PRDX-2 levels are altered over one month following ultra-endurance exercise. Nine middle-aged men participated in a 145 mile ultra-endurance running race event. Blood drawing was undertaken immediately before, upon completion/retirement, and at one, seven and twenty eight-days following the race. PRDX-2 levels were examined at each time-point, for all participants (n=9) by reducing SDS-PAGE and western blotting. Further analysis using non-reducing SDS-PAGE and western blotting was undertaken in a sub-group of men who completed the race (n = 4) to investigate PRDX-2 oligomeric state (indicative of oxidation state). Ultra-endurance exercise caused a significant alteration in lymphocyte PRDX-2 levels (F(4,32) 3.409, p=0.020, η2 =0.299): seven-days after the race PRDX-2 levels fell by 70% (p=0.013) and at twenty eight-days after the race returned to near-normal levels. PRDX-2 dimers (intracellular reduced PRDX-2 monomers) in three of the four participants, who finished the race, were increased upon race completion. Furthermore, PRDX-2 monomers (intracellular over-oxidized PRDX-2 monomers) in two of these four participants were present upon race completion, but absent seven-days after the race. This study found that PRDX-2 levels in lymphocytes were reduced below normal levels seven-days after an ultra-endurance running race. We suggest that excessive reactive oxygen species production, induced by ultra-endurance exercise may, in part, explain the depletion of lymphocyte PRDX-2 by triggering its turnover after oxidation.
Resumo:
Type 2 diabetes mellitus (T2DM) increases in prevalence in the elderly. There is evidence for significant muscle loss and accelerated cognitive impairment in older adults with T2DM; these comorbidities are critical features of frailty. In the early stages of T2DM, insulin sensitivity can be improved by a “healthy” diet. Management of insulin resistance by diet in people over 65 years of age should be carefully re-evaluated because of the risk for falling due to hypoglycaemia. To date, an optimal dietary programme for older adults with insulin resistance and T2DM has not been described. The use of biomarkers to identify those at risk for T2DM will enable clinicians to offer early dietary advice that will delay onset of disease and of frailty. Here we have used an in silico literature search for putative novel biomarkers of T2DM risk and frailty. We suggest that plasma bilirubin, plasma, urinary DPP4-positive microparticles and plasma pigment epithelium-derived factor merit further investigation as predictive biomarkers for T2DM and frailty risk in older adults. Bilirubin is screened routinely in clinical practice. Measurement of specific microparticle frequency in urine is less invasive than a blood sample so is a good choice for biomonitoring. Future studies should investigate whether early dietary changes, such as increased intake of whey protein and micronutrients that improve muscle function and insulin sensitivity, affect biomarkers and can reduce the longer term complication of frailty in people at risk for T2DM.
Resumo:
PURPOSE: To assess the accuracy of three wavefront analyzers versus a validated binocular open-view autorefractor in determining refractive error in non-cycloplegic eyes. METHODS: Eighty eyes were examined using the SRW-5000 open-view infrared autorefractor and, in randomized sequence, three wavefront analyzers: 1) OPD-Scan (NIDEK, Gamagori, Japan), 2) WASCA (Zeiss/Meditec, Jena, Germany), and 3) Allegretto (WaveLight Laser Technologies AG, Erlangen, Germany). Subjects were healthy adults (19 men and 21 women; mean age: 20.8 +/- 2.5 years). Refractive errors ranged from +1.5 to -9.75 diopters (D) (mean: +1.83 +/- 2.74 D) with up to 1.75 D cylinder (mean: 0.58 +/- 0.53 D). Three readings were collected per instrument by one examiner without anticholinergic agents. Refraction values were decomposed into vector components for analysis, resulting in mean spherical equivalent refraction (M) and J0 and J45 being vectors of cylindrical power at 0 degrees and 45 degrees, respectively. RESULTS: Positive correlation was observed between wavefront analyzers and the SRW-5000 for spherical equivalent refraction (OPD-Scan, r=0.959, P<.001; WASCA, r=0.981, P<.001; Allegretto, r=0.942, P<.001). Mean differences and limits of agreement showed more negative spherical equivalent refraction with wavefront analyzers (OPD-Scan, 0.406 +/- 0.768 D [range: 0.235 to 0.580 D] [P<.001]; WASCA, 0.511 +/- 0.550 D [range: 0.390 to 0.634 D] [P<.001]; and Allegretto, 0.434 +/- 0.904 D [range: 0.233 to 0.635 D] [P<.001]). A second analysis eliminating outliers showed the same trend but lower differences: OPD-Scan (n=75), 0.24 +/- 0.41 D (range: 0.15 to 0.34 D) (P<.001); WASCA (n=78), 0.46 +/- 0.47 D (range: 0.36 to 0.57 D) (P<.001); and Allegretto (n=77), 0.30 +/- 0.62 D (range: 0.16 to 0.44 D) (P<.001). No statistically significant differences were noted for J0 and J45. CONCLUSIONS: Wavefront analyzer refraction resulted in 0.30 D more myopia compared to SRW-5000 refraction in eyes without cycloplegia. This is the result of the accommodation excess attributable to instrument myopia. For the relatively low degrees of astigmatism in this study (<2.0 D), good agreement was noted between wavefront analyzers and the SRW-5000. Copyright (C) 2006 SLACK Incorporated
Resumo:
PURPOSE: To evaluate the hypothesis that objective measures of open- and closed-loop ocular accommodation are related to systemic cardiovascular function, and ipso facto autonomic nervous system activity. METHODS: Sixty subjects (29 male; 31 female) varying in age from 18 to 33 years (average: 20.3 +/- 2.9 years) with a range of refractive errors [mean spherical equivalent (MSE): -7.12 to +1.82 D] participated in the study. Five 20-s continuous objective recordings of the accommodative response, measured with an open-view IR autorefractor (Shin-Nippon SRW-5000), were obtained for a variety of open- and closed-loop accommodative demands while simultaneous continuous measurement of heart rate was recorded with a finger-mounted piezo-electric pulse transducer for 5 min. Fast Fourier Transformation of cardiovascular function allowed the absolute and relative power of the autonomic components to be assessed in the frequency-domain, whereas heart period gave an indication of the time-domain response. RESULTS: Increasing closed-loop accommodative demand led to a concurrent increase in heart rate of approximately 2 beats/min for a 4.0 D increase in accommodative demand. The increase was attributable to a reduction in the absolute (p < 0.05) and normalised (p < 0.001) input of the systemic parasympathetic nervous system, and was unaffected by refractive group. The interaction with refractive group failed to reach significance. CONCLUSIONS: For sustained accommodation effort, the data demonstrate covariation between the oculomotor and cardiovascular systems which implies that a near visual task can significantly influence cardiovascular behaviour. Accommodative effort alone, however, is not a sufficient stimulus to induce autonomic differences between refractive groups. The data suggest that both the oculomotor and cardiovascular systems are predominantly attributable to changes in the systemic parasympathetic nervous system.
Resumo:
Protein quality of carp diets was assessed by five methods: 1. True digestibility, true NPU, BV (as percentage) and PER were determined for approximately iso-energetic diets containing ca.38% protein from 4 different sources. Fish meal gave values of 94.0, 72.5, 77.0, and 1.21 respectively; egg 93.0, 65.4, 70.3, 1.26; Pruteen 68.4, 63.6, 68.40, 1.36; and Casein 91.0, 56.90, 62.5, 1.33. 2. Blood urea were determined and found to be significantly increased with increasing protein concentration in the diet. 3. Ammonia excretion rate was determined; it increased with a decline in protein quality, being greater on groundnut, rapeseed meal, and sunflower diets than on fishmeal, cottonseed meal, and pruteen. 4. Protein sources were incubated in vitro with digestive fluids of fish. Protein digestibilities for fishmeal diets containing 14 and 27% protein were 90.2 and 93.0% respectively; casein (18 and 36%), 91.5 and 93.2%; soybean (10 and 20%), 84.2 and 85.3% ; sunflower (8 and 16%), 64.2 and 66.1%; and fish meal plus soybean meal (ca. 18.2%) 86.5. 5. Plasma free amino acids were individually determined at 0, 6, 24 and 48 h after force-feeding diets containing 15 and 30% protein from six different sources. Total free AA were highest at 24 h for casein and fishmeal, and at 48 h for egg, soybean, rapeseed and sunflower. The 24 h essential amino acid indices (EAAI) for the six diets at 15% protein were, in the same order, 93.0, 100, 100, 86.4, 62.4, and 97.2. At 30% protein, the 24 h EAAI were 78.5, 84.3, 100, and 83.8 for casein, fishmeal, egg, and rapeseed respectively.
Resumo:
Osteochondral tissue repair requires formation of vascularized bone and avascular cartilage. Mesenchymal stem cells stimulate angiogenesis both in vitro and in vivo but it is not known if these proangiogenic properties change as a result of chondrogenic or osteogenic differentiation. We investigated the angiogenic/antiangiogenic properties of equine bone marrow-derived mesenchymal stem cells (eBMSCs) before and after differentiation in vitro. Conditioned media from chondrogenic and osteogenic cell pellets and undifferentiated cells was applied to endothelial tube formation assays using Matrigel™. Additionally, the cell secretome was analysed using LC-MS/MS mass spectrometry and screened for angiogenesis and neurogenesis-related factors using protein arrays. Endothelial tube-like formation was supported by conditioned media from undifferentiated eBMSCs. Conversely, chondrogenic and osteogenic conditioned media was antiangiogenic as shown by significantly decreased length of endothelial tube-like structures and degree of branching compared to controls. Undifferentiated cells produced higher levels of angiogenesis-related proteins compared to chondrogenic and osteogenic pellets. In summary, eBMSCs produce an array of angiogenesis-related proteins and support angiogenesis in vitro via a paracrine mechanism. However, when these cells are differentiated chondrogenically or osteogenically, they produce a soluble factor(s) that inhibits angiogenesis. With respect to osteochondral tissue engineering, this may be beneficial for avascular articular cartilage formation but unfavourable for bone formation where a vascularized tissue is desired. © Copyright 2014, Mary Ann Liebert, Inc.
Resumo:
Cyclooxygenase 2 (COX2), a key regulatory enzyme of the prostaglandin/eicosanoid pathway, is an important target for anti-inflammatory therapy. It is highly induced by pro-inflammatory cytokines in a Nuclear factor kappa B (NFκB)-dependent manner. However, the mechanisms determining the amplitude and dynamics of this important pro-inflammatory event are poorly understood. Furthermore, there is significant difference between human and mouse COX2 expression in response to the inflammatory stimulus tumor necrosis factor alpha (TNFα). Here, we report the presence of a molecular logic AND gate composed of two NFκB response elements (NREs) which controls the expression of human COX2 in a switch-like manner. Combining quantitative kinetic modeling and thermostatistical analysis followed by experimental validation in iterative cycles, we show that the human COX2 expression machinery regulated by NFκB displays features of a logic AND gate. We propose that this provides a digital, noise-filtering mechanism for a tighter control of expression in response to TNFα, such that a threshold level of NFκB activation is required before the promoter becomes active and initiates transcription. This NFκB-regulated AND gate is absent in the mouse COX2 promoter, most likely contributing to its differential graded response in promoter activity and protein expression to TNFα. Our data suggest that the NFκB-regulated AND gate acts as a novel mechanism for controlling the expression of human COX2 to TNFα, and its absence in the mouse COX2 provides the foundation for further studies on understanding species-specific differential gene regulation.