23 resultados para 2 hydroxyethyl methacrylate

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zwitterionic copolymers were synthesised from N,N-dimethyl-N-(2- acryloylethyl)-N-(3-sulfopropyl) ammonium betaine (SPDA) and 2-hydroxyethyl methacrylate (HEMA) produce a series of polyzwitterion hydrogels. For the synthesis of the charge-balanced copolymer hydrogels, two cationic monomers were selected: 2-(diethylamino) ethyl methacrylate (DMAEMA) and 3-(dimethylamino) propyl methacrylamide (DMAPMA), and an anionic monomer; 2-acrylamido-2- methylpropane sulphonic acid (AMPS). Two series of charge-balanced copolymers were synthesized from stoichiometrically equivalent ratios of DMAEMA or DMAPMA and AMPS with HEMA as a termonomer. All synthesized copolymers produced clear and cohesive hydrogels. The zwitterionic and charge-balanced copolymers displayed similar equilibrium water contents together with similar mechanical and surface energy properties. The swelling of the zwitterionic and the charge-balanced copolymers shows some features of antipolyelectrolyte behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of well-defined hydrophilic methacrylic macromonomers has been synthesized by the judicious combination of atom transfer radical polymerization (ATRP) and copper-catalyzed 1,3-dipolar cycloaddition (azide-alkyne click chemistry). An azido a-functionalized ATRP initiator was used to produce well-defined homopolymers with terminal azide functionality via ATRP in protic media at 20 °C, with generally good control being achieved over both target molecular weight and final polydispersity (Mw/Mn = 1.10-1.35). Suitable methacrylic monomers include 2-aminoethyl methacrylate hydrochloride, 2-(diethylamino)ethyl methacrylate, 2-(dimethylamino)ethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-(methacryloyloxy)ethyl phosphorylcholine, glycerol monomethacrylate, potassium 3-sulfopropyl methacrylate, and quaternized 2-(dimethylamino)ethyl methacrylate. These homopolymer precursors were then efficiently clicked using either propargyl methacrylate or propargyl acrylate to yield near-monodisperse (meth)acrylate-capped macromonomers with either cationic, anionic, nonionic, or zwitterionic character. Moreover, this generic route to well-defined hydrophilic macromonomers is also suitable for “one-pot” syntheses, as exemplified for 2-hydroxyethyl methacrylate and glycerol monomethacrylate-based macromonomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels are a unique class of polymers which swell, but do not dissolve in water. A range of 2-hydroxyethyl methacrylate based copolymer hydrogels have been synthesised and are described in this thesis. Initially, hydrogels were synthesised containing acryloylmorpholine, N,N-dimethyl acrylamide and N-vinyl pyrrolidone. Variations in structure and composition have been correlated with the sequence distribution, equilibrium water content (EWC) , mechanical and surface properties of the hydrogels. The sequence distribution was found to be dependant on the structure and reactivity of the monomers. The EWC was found to be dependant on the water structuring groups present in the hydrogel, although the water binding abilities were modified by steric effects. The mechanical properties were also investigated and were found to be dependant on the monomer structure, sequence distribution and the amount and nature of water in the hydrogel. The macroscopic surface properties of the hydrogels were probed using surface energy determinations and were found to be a function of the water content and the hydrogel composition. At a molecular level, surface properties were investigated using an in vitro ocular spoilation model and single protein adhesion studies. The results indicate that the sequence distribution and the polarity of the surface affect the adhesion of biological species. Finally, a range of 2-hydroxyethyl methacrylate based copolymer hydrogels containing both charged monomer groups and linear polyethers have been synthesised and described. Although variations in the EWC are observed with the structure of the monomers, it was observed that the EWC increased due to the polar character of the charged monomers and the chain length and hydrophilicity of the polyethers. Investigation of these hydrogel surfaces revealed subtle changes. The molecular surface properties indicate the significance of the effect of charge and molecular mobility of the groups expressed at the hydrogel surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to synthesise a series of hydrophilic derivatives of cis-1,2-dihydroxy-3,5-cyclohexadiene (cis-DHCD) and copolymerise them with 2-hydroxyethyl methacrylate (HEMA), to produce a completely new range of hydrogel materials. It is theorised that hydrogels incorporating such derivatives of cis-DHCD will exhibit good strength and elasticity in addition to good water binding ability. The synthesis of derivatives was attempted by both enzymatic and chemical methods. Enzyme synthesis involved the transesterification of cis-DHCD with a number of trichloro and trifluoroethyl esters using the enzyme lipase porcine pancreas to catalyse the reaction in organic solvent. Cyclohexanol was used in initial studies to assess the viability of enzyme catalysed reactions. Chemical synthesis involved the epoxidation of a number of unsaturated carboxylic acids and the subsequent reaction of these epoxy acids with cis-DHCD in DCC/DMAP catalysed esterifications. The silylation of cis-DHCD using TBDCS and BSA was also studied. The rate of aromatisation of cis-DHCD at room temperature was studied in order to assess its stability and 1H NMR studies were also undertaken to determine the conformations adopted by derivatives of cis-DHCD. The copolymerisation of diepoxybutanoate, diepoxyundecanoate, dibutenoate and silyl protected derivatives of cis-DHCD with HEMA, to produce a new group of hydrogels was investigated. The EWC and mechanical properties of these hydrogels were measured and DSC was used to determine the amount of freezing and non-freezing water in the membranes. The effect on EWC of opening the epoxide rings of the comonomers was also investigated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis the factors surrounding the permeation of alkali and alkaline earth metal salts through hydrogel membranes are investigated. Although of relevance to aqueous separations in general, it was with their potential application in sensors that this work was particularly concerned. In order to study the effect that the nature of the solute has on the transport process, a single polymer matrix, poly (2-hydroxyethyl methacrylate), was initially studied. The influence of cation variation in the presence of a fixed anion was looked at, followed by the effect of the anion in the presence of a fixed cation. The anion was found to possess the dominant influence and tended to subsume any influence by the cation. This is explained in terms of the structure-making and structure-breaking characteristics of the ions in their solute-water interactions. Analogies in the transport behaviour of the salts are made with the Hofmeister series. The effect of the chemical composition of the polymer backbone on the water structuring in the hydrogel and, consequently, transport through the membrane, was investigated by preparing a series of poly (2-hydroxyethyl methacrylate) copolymer membranes and determining the permeability coefficient of salts with a fixed anion. The results were discussed in terms of the `free-volume' model of permeation and the water structuring of the polymer backbone. The ability of ionophores to selectively modulate the permeation of salts through hydrogel membranes was also examined. The results indicated that a dualsorption model was in operation. Finally, hydrogels were used as membrane overlays on coated wire ion-selective electrodes that employed conventional plasticised-PVC-valinomycin based sensing membranes. The hydrogel overlays were found to affect the access of the analyte but not the underlying electrochemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels may be conveniently described as hydrophilic polymers that are swollen by, but do not dissolve in water. In this work a series of copolymer hydrogels and semi-interpenetrating polymer networks based on the monomers 2-hydroxyethyl methacrylate, N-vinyl pyrrolidone and N'N' dimethyl acrylamide, together with some less hydrophilic hydroxyalkyl acrylates and methacrylates have been synthesised. Variations in structure and composition have been correlated both with the total equilibrium water content of the resultant hydrogel and with the more detailed water binding behaviour, as revealed by differential scanning calorimetry studies. The water binding characteristics of the hydrogels were found to be primarily a function of the water structuring groups present in gel. The water binding abilities of these groups were, however, modified by steric effects. The mechanical properties of the hydrogels were also investigated. These were found to be dependent on both the polymer composition and the amount and nature of the water present in the gels. In biological systems, composite formation provides a means of producing strong, high water content materials. As an analogy with these systems hydrogel composites were prepared. In an initial study of these materials the water binding and mechanical properties of semi-interpenetrating polymer networks of N'N'dimethyl acrylamide with cellulosic type materials, with polyurethanes and with ester containing polymers were examined. A preliminary investigation of surface properties of both the copolymers and semi-interpenetrating polymer networks has been completed, using both contact angle measurements and anchorage dependent fibroblast cells. Measurable differences in surface properties attributable to structural variations in the polymers were detected by droplet techniques in the dehydrated state. However, in the hydrated state these differences were masked by the water in the gels. The use of cells enabled the underlying differences to be probed and the nature of the water structuring group was again found to be the dominant factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research described within this thesis is concerned with the investigation of transition metal ion complexation within hydrophilic copolymer membranes. The membranes are copolymers of 4-methyl-4'-vinyl-2,2'-bipyridine, the 2-hydroxyethyl ester of 4,4'- dicarboxy-2,2'-bipyridine & bis-(5-vinylsalicylidene)ethylenediamine with 2-hydroxyethyl methacrylate. The effect of the polymer matrix on the formation and properties of transition metal iron complexes has been studied, specifically Cr(III) & Fe(II) salts for the bipyridyl- based copolymer membranes and Co(II), Ni(II) & Cu(II) salts for the salenH2- based copolymer membranes. The concomitant effect of complex formation on the properties of the polymer matrix have also been studied, e.g. on mechanical strength. A detailed body of work into the kinetics and thermodynamics for the formation of Cu(II) complexes in the salenH2- based copolymer membranes has been performed. The rate of complex formation is found to be very slow while the value of K for the equilibrium of complex formation is found to be unexpectedly small and shows a slight anion dependence. These phenomena are explained in terms of the effects of the heterogeneous phase provided by the polymer matrix. The transport of Cr(III) ions across uncomplexed and Cr(III)-pre-complexed bipyridyl-based membranes has been studied. In both cases, no Cr(III) coordination occurs within the time-scale of an experiment. Pre-complexation of the membrane does not lead to a change in the rate of permeation of Cr(III) ions. The transport of Co(II), Ni(II) & Cu(II) ions across salenH2- based membranes shows that there is no detectable lag-time in transport of the ions, despite independent evidence that complex formation within the membranes does occur. Finally, the synthesis of a number of functionalised ligands is described. Although they were found to be non-polymerisable by the methods employed in this research, they remain interesting ligands which provide a startmg pomt for further functionalisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this project were:1) the synthesis of a range of new polyether-based vinylic monomers and their incorporation into poly(2-hydroxyethyl methacrylate) (poly(HEMA)) based hydrogel networks, of interest to the contact lens industry.2) the synthesis of a range of alkyltartronic acids, and their derivatives. These molecules may ultimately be used to produce functionalised poly(-hydroxy acids) of potential interest in either drug delivery or surgical suture applications. The novel syntheses of a range of both methoxy poly(ethylene glycol) acrylates (MPEGAs) and poly(ethylene glycol) acrylates (PEGAs) are described. Products were obtained in very good yields. These new polyether-based vinylic monomers were copolymerised with 2-hydroxyethyl methacrylate (HEMA) to produce a range of hydrogels. The equilibrium water contents (EWC) and surface properties of these copolymers containing linear polyethers were examined. It was found that the EWC was enhanced by the presence of the hydrophilic polyether chains.Results suggest that the polyether side chains express themselves at the polymer surface, thus dictating the surface properties of the gels. Consequentially, this leads to an advantageous reduction in the surface adhesion of biological species. A synthesis of a range of alkyltartronic acids is also described. The acids prepared were obtained in very good yields using a novel four-stage synthesis. These acids were modified to give potassium monoethyl alkyltartronates. Although no polyesterification is described in this thesis, these modified alkyltartronic acid derivatives are considered to be potentially excellent starting materials for poly (alkyltartronic acid) synthesis via anhydrocarboxylate or anhydrosulphite cyclic monomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels are a unique class of polymer which swell, but do not dissolve in, water. A range of 2-hydroxyethyl methacrylate based copolymer hydrogels containing both cyclic and linear polyethers have been synthesised and are described in this thesis. Initially, cyclic polyethers were occluded within the polymer matrix and the transport properties investigated. The results indicated that the presence of an ionophore can be used to modulate ion transport and that ion transport is described by a dual-sorption mechanism. However, these studies were limited due to ionophore loss during hydration. Hence, the synthesis of a range of acrylate based crown ether monomers was considered. A pure sample of 4-acryolylaminobenzo-15-crown-5 was obtained and a terpolymer containing this monomer was prepared. Transport studies illustrated that the presence of a `bound' ionophore modulates ion transport in a similar way to the occluded systems. The transport properties of a series of terpolymers containing linear polyethers were then investigated. The results indicated that the dual-sorption mechanism is observed for these systems with group II metal cations while the transport of group I metal cations, with the exception of sodium, is enhanced. Finally, the equilibrium water contents (EWC) surface and mechanical properties of these terpolymers containing linear polyethers were examined. Although subtle variations in EWC are observed as the structure of the polyether side chain varies, generally EWC is enhanced due to the hydrophilicity of the polyether side chain. The macroscopic surface properties were investigated using a sessile drop technique and FTIR spectroscopy. At a molecular level surface properties were probed using an in vitro ocular spoilation model and preliminary cell adhesion studies. The results indicate that the polyethylene oxide side chains are expressed at the polymer surface thus reducing the adhesion of biological species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the project was to synthesise hydrophilic derivatives of 1,2-dihydroxy-3,5-cyclohexadiene (DHCD) and to copolymerise these derivatives with 2-hydroxyethyl methacrylate (HEMA), to give a completely new range of hydrogel materials. It was thought that hydro gels incorporating hydrophilic derivatives of DHCD could have good mechanical properties and good water binding ability. A model compound for cis-DHCD was sought, as cis-DHCD was expensive and stable under only a narrow range of conditions. Catechol was found to be an excellent model for cis-DHCD, as 1H NMR spectroscopy indicated that both compounds contained eclipsed hydroxy groups and flat rings. A number of catechol derivatives were prepared in good yield, under non-acidic conditions at room temperature. The limited availabilty of cis-DHCD led to an investigation into synthesising hydrophilic derivatives of both cis and trans-DHCD indirectly. Hydrophobic derivatives were easily prepared by indirect routes, but it was found that hydrophilic derivatives were considerably more difficult to synthesise. A number of novel routes to both cis and trans-DHCD were also explored. Copolymerisation of diacetate, dimethylcarbonate and dipivalate derivatives of cis-DHCD with HEMA, to form a hitherto unknown group of hydrogels, is reported. Hydrogels containing these monomers showed significant improvements in both tensile strength and Youngs modulus, at both equivalent composition and water content, over the corresponding HEMA / styrene and HEMA / methyl methacrylate analogues. It was observed that derivatives of trans-DHCD polymerise with difficulty. 1H NMR studies indicated that both faces of the ring were shielded by the pendant groups thereby preventing efficient polymerisation of the trans monomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the investigation of transition metal (TM) ion complexation with hydrophilic membranes composed of copolymers of 4-vinyl pyridine & 4-methyl-4'vinyl- 2,2'-bipyridine with 2-hydroxyethyl methacrylate. The Cu(II), CoCII) & Fe(II) complexes with these coordinating membranes were characterised by a variety of techniques, in order to assess the effect of the polymer on the properties of the complex, and vice versa. A detailed programme of work was instigated into the kinetics of formation for the polymer-bound tris(bipyridyl) iron(II) complex; the rate and extent of complex formation was found to be anion-dependent. This is explained in terms of the influence of the anion on the transport properties and water content of the membrane, the controlling factor in the development of the tris-complex being the equilibrium concentration of Fe(II) in the gel matrix. A series of transport studies were performed with a view to the potential application of complexing hydrogel membranes for aqueous TM ion separations. A number of salts were studied individually and shown to possess a range of permeabilities; the degree of interaction between particular metal-ion:ligand combinations is given by the lag-time observed before steady-state permeation is achieved. However, when two TM salts that individually display different transport properties were studied in combination, they showed similar lag-times & permeabilities, characteristic of the more strongly coordinating metal ion. This 'anti-selective' nature thus renders the membrane systems unsuitable for TM ion separations. Finally, attempts were made to synthesise and immobilise a series of N ,0-donor macrocyclic ligands into hydrogel membranes. Although the functionalisation reactions failed, limited transport data was obtained from membranes in which the ligands were physically entrapped within the polymer matrix.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work has used novel polymer design and fabrication technology to generate bead form polymer based systems, with variable, yet controlled release properties, specifically for the delivery of macromolecules, essentially peptides of therapeutic interest. The work involved investigation of the potential interaction between matrix ultrastructural morphology, in vitro release kinetics, bioactivity and immunoreactivity of selected macromolecules with limited hydrolytic stability, delivered from controlled release vehicles. The underlying principle involved photo-polymerisation of the monomer, hydroxyethyl methacrylate, around frozen ice crystals, leading to the production of a macroporous hydrophilic matrix. Bead form matrices were fabricated in controllable size ranges in the region of 100µm - 3mm in diameter. The initial stages of the project involved the study of how variables, delivery speed of the monomer and stirring speed of the non solvent, affectedthe formation of macroporous bead form matrices. From this an optimal bench system for bead production was developed. Careful selection of monomer, solvents, crosslinking agent and polymerisation conditions led to a variable but controllable distribution of pore sizes (0.5 - 4µm). Release of surrogate macromolecules, bovine serum albumin and FITC-linked dextrans, enabled factors relating to the size and solubility of the macromolecule on the rate of release to be studied. Incorporation of bioactive macromolecules allowed retained bioactivity to be determined (glucose oxidase and interleukin-2), whilst the release of insulin enabled determination of both bioactivity (using rat epididymal fat pad) and immunoreactivity (RIA). The work carried out has led to the generation of macroporous bead form matrices, fabricated from a tissue biocompatible hydrogel, capable of the sustained, controlled release of biologically active peptides, with potential use in the pharmaceutical and agrochemical industries.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Lower back pain treatment and compensation costs >$80 billion overall in the US. 75% of back pain is due to disc degeneration in the lumbar region of the spine. Current treatment comprises of painkillers and bed rest or as a more radical solution – interbody cage fusion. In the early stages of disc degeneration the patient would benefit from addition of an injectable gel which polymerises in situ to support the degenerated nucleus pulposus. This involves a material which is an analogue of the natural tissue capable of restoring the biomechanical properties of the natural disc. The nucleus pulposus of the intervertebral disc is an example of a natural proteoglycan consisting of a protein core with negatively charged keratin and chondroitin sulphate attached. As a result of the high fixed charge density of the proteoglycan, the matrix exerts an osmotic swelling pressure drawing sufficient water into support the spinal system. Materials and Methods: NaAMPs (sodium 2- acrylamido 2-methyl propane sulphonic acid) and KSPA (potassium 3- sulphopropyl acrylate) were selected as monomers, the sulphonate group being used to mimic the natural sulphate group. These are used in dermal applications involving chronic wounds and have acceptably low cytotoxicity. Other hydrophilic carboxyl, amide and hydroxyl monomers such as 2-hydroxyethyl acrylamide, ß-carboxyethyl acrylate, acryloyl morpholine, and polyethylene glycol (meth)acrylate were used as diluents together with polyethyleneglycol di(meth)acrylate and hydrophilic multifunctional macromers as cross-linker. Redox was the chosen method of polymerisation and a range of initiators were investigated. Components were packaged in two solutions each containing a redox pair. A dual syringe method of injection into the cavity was used, the required time for polymerisation is circa 3-7 minutes. The final materials were tested using a Bohlin CVO Rheometer cycling from 0.5-25Hz at 37oC to measure the modulus. An in-house compression testing method was developed, using dialysis tubing to mimic the cavity, the gels were swelled in solutions of various osmolarity and compressed to ~ 20%. The pre-gel has also been injected into sheep spinal segments for mechanical compression testing to demonstrate the restoration of properties upon use of the gel. Results and Discussion: Two systems resulted using similar monomer compositions but different initiation and crosslinking agents. NaAMPs and KSPA were used together at a ratio of ~1:1 in both systems with 0.25-2% crosslinking agent, diacrylate or methacrylate. The two initiation systems were ascorbic acid/oxone, and N,N,N,N - tetramethylethylenediamine (TEMED)/ potassium persulphate. These systems produced gelation within 3-7 and 3-5 minutes respectively. Storage of the two component systems was shown to be stable for approximately one month after mixing, in the dark, refrigerated at 1-4oC. The gelation was carried out at 37oC. Literature values for the natural disc give elastic constants ranging from 3-8kPa. The properties of the polymer can be tailored by altering crosslink density and monomer composition and are able to match those of the natural disc. It is possible to incorporate a radio-opaque (histodenz) to enable x-ray luminescence during and after injection. At an inclusion level of 5% the gel is clearly visible and polymerisation and mechanical properties are not altered. Conclusion: A two-pac injection system which will polymerise in situ, that can incorporate a radio-opaque, has been developed. This will reinforce the damaged nucleus pulposus in degenerative disc disease restoring adequate hydration and thus biomechanical properties. Tests on sheep spine segments are currently being carried out to demonstrate that a disc containing the gel has similar properties to an intact disc in comparison to one with a damaged nucleus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[Cu(hyetrz)3](CF3SO3)2·H2O [hyetrz = 4-(2′-hydroxyethyl)-1,2,4-triazole] represents the first structurally characterised ferromagnetically coupled CuII chain compound containing triple N1,N2-1,2,4-triazole bridges. catena-[μ-Tris{4-(2′-hydroxyethyl)-1,2,4-triazole-N1,N2}copper(II)] bis(trifluoromethanesulfonate) hydrate (C14H23F6S2O10CuN9) crystallises in the triclinic space group Pl, a = 13.54(3), b = 14.37(3), c = 15.61(4) Å, α = 95.9(1), β = 104.9(1), γ = 106.5(1)°, V = 2763(11) Å3, Z = 4 (CuII units). The CuII ions are linked by triple N1,N2-1,2,4-triazole bridges yielding an alternating chain with Cu1−Cu2 = 3.8842(4) Å and Cu2−Cu3 = 3.9354(4) Å. Analysis of the magnetic data according to a high-temperature series expansion gives a J value of +1.45(3) cm−1. The nature and the magnitude of the ferromagnetic exchange have been discussed on the basis of the structural features. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design and synthesis of biomaterials covers a growing number of biomedical applications. The use of biomaterials in biological environment is associated with a number of problems, the most important of which is biocompatabUity. If the implanted biomaterial is not compatible with the environment, it will be rejected by the biological site. This may be manifested in many ways depending on the environment in which it is used. Adsorption of proteins takes place almost instantaneously when a biomaterial comes into contact with most biological fluids. The eye is a unique body site for the study of protein interactions with biomaterials, because of its ease of access and deceptive complexity of the tears. The use of contact lenses for either vision correction and cosmetic reasons or as a route for the controlled drug delivery, has significantly increased in recent years. It is relatively easy to introduce a contact lens Into the tear fluid and remove after a few minutes without surgery or trauma to the patient. A range of analytical techniques were used and developed to measure the proteins absorbed to some existing commercial contact lens materials and also to novel hydrogels synthesised within the research group. Analysis of the identity and quantity of proteins absorbed to biomaterials revealed the importance of many factors on the absorption process. The effect of biomaterial structure, protein nature in terms of size. shape and charge and pH of the environment on the absorption process were examined in order to determine the relative up-take of tear proteins. This study showed that both lysozyme and lactoferrin penetrate the lens matrix of ionic materials. Measurement of the mobility and activity of the protein deposited into the surface and within the matrix of ionic lens materials demonstrated that the mobility is pH dependent and, within the experimental errors, the biological activity of lysozyme remained unchanged after adsorption and desorption. The study on the effect of different monomers copolymerised with hydroxyethyl methacrylate (HEMA) on the protein up-take showed that monomers producing a positive charge on the copolymer can reduce the spoilation with lysozyme. The studies were extended to real cases in order to compare the patient dependent factors. The in-vivo studies showed that the spoilation is patient dependent as well as other factors. Studies on the extrinsic factors such as dye used in colour lenses showed that the addition of colourant affects protein absorption and, in one case, its effect is beneficial to the wearer as it reduces the quantity of the protein absorbed.