12 resultados para 2,2-diphenyl-1-picrylhydrazyl (DPPH)
em Aston University Research Archive
Resumo:
The aim of this work was to use extremely low concentrations of free radical generating compounds as a 'catalyst' to trigger endogenous free radical chain reactions in the host and to selectively eliminate neoplastic cells in the host. To test the hypothesis, a number of free radical generating compounds were screened on several malignant cell lines in vitro to select model compounds that were used against tumour models in vivo. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and its derivatives were selected at the model compounds for in vivo experiments in view of their high cytotoxic potency against several malignant cell lines in vitro. The water soluble derivative, 2,2-diphenyl-1-(2', 4'-dinitro-6'-sulphophenyl) hydrazyl (DDSH) given by subcutaneous injections demonstrated significant antitumour activities against the MAC 16 murine colon adenocarcinoma implanted subcutaneously in male NMRI mice at nanomolar concentration range. 40-60% of long term survival of over 60 days was achieved (compared with control survival of 20 days) with total tumour elimination. This compound was also active against both P388 leukaemia in male BDF1 mice and TLX5 lymphoid tumour in male CBA/CA mice at a similar concentration range. However, some of these animals died suddenly after treatment with no evidence of disease present at post mortem. The cause of death was unknown but thought to be related to the treatment. There was significant increase in serum level of malondialdehyde (MDA) following treatment, but did not correlate to the antitumour activities of these compounds. Induction of supcroxide dismutase (SOD), and glutathione peroxidase (GPx) occurred around day 8 after the administration of DDSH. Histological sections of MAC16 tumours showed areas of extensive massive haemorrhagic necrosis and vascular collapse associated with perivascular cell death following the administration of nanomolar concentration of DDSH which was probably compatible with the effects of free radicals. It was concluded that the antitumour activities of these compounds may be related to free radical and cytokine production.
Resumo:
Several ester derivatives of rosmarinic acid (rosmarinates) were synthesised, characterised (1D and 2D NMR, UV and FTIR spectroscopy) and tested for their potential use as antioxidants derived from a renewable natural resource. The intrinsic free radical scavenging activity of the rosmarinates was assessed, initially using a modified DPPH (2, 2-diphenyl-1-picrylhydrazyl radical) method, and found to be higher than that of commercial synthetic hindered phenol antioxidants Irganox 1076 and Irganox 1010. The thermal stabilising performance of the rosmarinates in polyethylene (PE) and polypropylene (PP) was subsequently examined and compared to that of samples prepared similarly but in the presence of Irganox 1076 (in PE) and Irganox 1010 (in PP) which are typically used for polyolefin stabilisation in industrial practice. The melt stability and the long-term thermo-oxidative stability (LTTS) of processed polymers containing the antioxidants were assessed by measuring the melt flow index (MFI), melt viscosity, oxidation induction time (OIT) and long-term (accelerated) thermal ageing performance. The results show that both the melt and the thermo-oxidative stabilisation afforded by the rosmarinates, and in particular the stearyl derivative, in both PE and PP, are superior to those of Irganox 1076 and Irganox 1010, hence their potential as effective sustainable bio-based antioxidants for polymers. The rosmarinic acid used for the synthesis of the rosmarinates esters in this study was obtained from commercial rosemary extracts (AquaROX80). Furthermore, a large number of different strains of UK-grown rosemary plants (Rosmarinum officinalis) were also extracted and analysed in order to examine their antioxidant content. It was found that the carnosic and the rosmarinic acids, and to a much lesser extent the carnosol, constituted the main antioxidant components of the UK-plants, with the two acids being present at a ratio of 3:1, respectively.
Resumo:
The muscarinic receptor from the cerebral cortex, heart, and lacrimal gland can be solubilized in the zwitterionic detergent 3-(3-cholamidopropyl)dimethylammonio-2-hydroxy-1-propane sulfonate (CHAPSO) with retention of high affinity [3H]N-methyls-copolamine binding. However, in this detergent there are significant differences in the binding properties of the receptors, compared with those observed in membranes and digitonin solution. Some agents retain a degree of selectivity. In the heart and cortex, agonists can bind with high affinity to a receptor-GTP-binding protein complex. A second, lower affinity, agonist binding state is also present, which resembles a class of sites seen in membranes but not in digitonin solution. The high affinity agonist binding state has been resolved from the lower affinity state on sucrose density gradient centrifugation. Hydrodynamic analysis suggests that the high affinity state is approximately 110,000 Da larger than the lower affinity state. The binding properties of the receptor in CHAPSO can be altered to those seen in digitonin by exchanging detergents after CHAPSO solubilization.
Resumo:
Controlled polymerization of 2-chloro-1,3-butadiene using reversible addition–fragmentation chain transfer (RAFT) polymerization has been demonstrated for the first time. 2-Chloro-1,3-butadiene, more commonly known as chloroprene, has significant industrial relevance as a crosslinked rubber, with uses ranging from adhesives to integral automotive components. However, problems surrounding the inherent toxicity of the lifecycle of the thiourea-vulcanized rubber have led to the need for control over the synthesis of poly(2-chloro-1,3-butadiene). To this end, four chain transfer agents in two different solvents have been trialed and the kinetics are discussed. 2-Cyano-2-propylbenzodithioate (CPD) is shown to polymerize 2-chloro-1,3-butadiene in THF, using AIBN as an initiator, with complete control over the target molecular weight, producing polymers with low polydispersities (Mw/Mn < 1.25 in all cases).
Resumo:
Statins possess anti-inflammatory effects that may contribute to their ability to slow atherogenesis, whereas nitric oxide (NO) also influences inflammatory cell adhesion. This study aimed to determine whether a novel NO-donating pravastatin derivative, NCX 6550 [(1S-[1∝(ßS*,dS*),2∝,6a∝,8ß-(R*),8a∝]]-1,2,6,7,8,8a-hexahydro-ß,δ,6-trihydroxy-2-methyl-8-(2-methyl-1-oxobutoxy)-1-naphthalene-heptanoic acid 4-(nitrooxy)butyl ester)], has greater anti-inflammatory properties compared with pravastatin in normal and atherosclerotic apolipoprotein E receptor knockout (ApoE-/-) mice. C57BL/6 and ApoE-/- mice were administered pravastatin (40 mg/kg), NCX 6550 (48.5 mg/kg), or vehicle orally for 5 days. Ex vivo studies assessed splenocyte adhesion to arterial segments and splenocyte reactive oxygen species (ROS) generation. NCX 6550 significantly reduced splenocyte adhesion to artery segments in both C57BL/6 (8.8 ± 1.9% versus 16.6 ± 6.7% adhesion; P < 0.05) and ApoE-/- mice (9.3 ± 2.9% versus 23.4 ± 4.6% adhesion; P < 0.05) concomitant with an inhibition of endothelial intercellular adhesion molecule-1 expression. NCX 6550 also significantly reduced phorbol 12-myristate 13-acetate-induced ROS production that was enhanced in isolated ApoE-/- splenocytes. Conversely, pravastatin had no significant effects on adhesion in normal or ApoE-/- mice but reduced the enhanced ROS production from ApoE-/- splenocytes. In separate groups of ApoE-/- mice, NCX 6550 significantly enhanced endothelium-dependent relaxation to carbachol in aortic segments precon-tracted with phenylephrine (-logEC50, 6.37 ± 0.37) compared with both vehicle-treated (-logEC50, 5.81 ± 0.15; P < 0.001) and pravastatin-treated (-logEC50, 5.57 ± 0.45; P < 0.05) mice. NCX 6550 also significantly reduced plasma monocyte chemoattractant protein-1 levels (648.8 pg/ml) compared with both vehicle (1191.1 pg/ml; P < 0.001) and pravastatin (847 ± 71.0 pg/ml; P < 0.05) treatment. These data show that NCX 6550 exerts superior anti-inflammatory actions compared with pravastatin, possibly through NO-related mechanisms.
Resumo:
Presently monoethanolamine (MEA) remains the industrial standard solvent for CO2 capture processes. Operating issues relating to corrosion and degradation of MEA at high temperatures and concentrations, and in the presence of oxygen, in a traditional PCC process, have introduced the requisite for higher quality and costly stainless steels in the construction of capture equipment and the use of oxygen scavengers and corrosion inhibitors. While capture processes employing MEA have improved significantly in recent times there is a continued attraction towards alternative solvents systems which offer even more improvements. This movement includes aqueous amine blends which are gaining momentum as new generation solvents for CO2 capture processes. Given the exhaustive array of amines available to date endless opportunities exist to tune and tailor a solvent to deliver specific performance and physical properties in line with a desired capture process. The current work is focussed on the rationalisation of CO2 absorption behaviour in a series of aqueous amine blends incorporating monoethanolamine, N,N-dimethylethanolamine (DMEA), N,N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) as solvent components. Mass transfer/kinetic measurements have been performed using a wetted wall column (WWC) contactor at 40°C for a series of blends in which the blend properties including amine concentration, blend ratio, and CO2 loadings from 0.0-0.4 (moles CO2/total moles amine) were systematically varied and assessed. Equilibrium CO2 solubility in each of the blends has been estimated using a software tool developed in Matlab for the prediction of vapour liquid equilibrium using a combination of the known chemical equilibrium reactions and constants for the individual amine components which have been combined into a blend.From the CO2 mass transfer data the largest absorption rates were observed in blends containing 3M MEA/3M Am2 while the selection of the Am2 component had only a marginal impact on mass transfer rates. Overall, CO2 mass transfer in the fastest blends containing 3M MEA/3M Am2 was found to be only slightly lower than a 5M MEA solution at similar temperatures and CO2 loadings. In terms of equilibrium behaviour a slight decrease in the absorption capacity (moles CO2/mole amine) with increasing Am2 concentration in the blends with MEA was observed while cyclic capacity followed the opposite trend. Significant increases in cyclic capacity (26-111%) were observed in all blends when compared to MEA solutions at similar temperatures and total amine concentrations. In view of the reasonable compromise between CO2 absorption rate and capacity a blend containing 3M MEA and 3M AMP as blend components would represent a reasonable alternative in replacement of 5M MEA as a standalone solvent.
Resumo:
Oxazepam (4a) has been used as overall starting material in the synthesis of novel 2-substituted 1,4-benzodiazepines. By reacting Oxazepam 4a with commercially available hydrazines, hydrazides, semicarbazide, aminoguanidine and N,N-dimethylamino aniline in ethanol under acetic conditions, a series of diazenyl-1,4-benzodiazepines 5a-5i and 2-amino- 1,4-benzodiazepine 5k were obtained in good yields. These novel compounds served as new chemical entities (NCE) for testing in mice. The diazo-benzodiazepine 5d has shown a promising antidepressant effect in initial experiments in vivo at a dose of 5 mg/kg. The highly coloured 2-aminobenzodiazepine derivative 5k showed over a dose range from 5-50 mg/kg an analgesic effect in mice. © Singh et al.
Resumo:
The aim of this letter is to demonstrate that complete removal of spectral aliasing occurring due to finite numerical bandwidth used in the split-step Fourier simulations of nonlinear interactions of optical waves can be achieved by enlarging each dimension of the spectral domain by a factor (n+1)/2, where n is the number of interacting waves. Alternatively, when using low-pass filtering for dealiasing this amounts to the need for filtering a 2/(n+1) fraction of each spectral dimension.
Resumo:
[Cu(hyetrz)3](CF3SO3)2·H2O [hyetrz = 4-(2′-hydroxyethyl)-1,2,4-triazole] represents the first structurally characterised ferromagnetically coupled CuII chain compound containing triple N1,N2-1,2,4-triazole bridges. catena-[μ-Tris{4-(2′-hydroxyethyl)-1,2,4-triazole-N1,N2}copper(II)] bis(trifluoromethanesulfonate) hydrate (C14H23F6S2O10CuN9) crystallises in the triclinic space group Pl, a = 13.54(3), b = 14.37(3), c = 15.61(4) Å, α = 95.9(1), β = 104.9(1), γ = 106.5(1)°, V = 2763(11) Å3, Z = 4 (CuII units). The CuII ions are linked by triple N1,N2-1,2,4-triazole bridges yielding an alternating chain with Cu1−Cu2 = 3.8842(4) Å and Cu2−Cu3 = 3.9354(4) Å. Analysis of the magnetic data according to a high-temperature series expansion gives a J value of +1.45(3) cm−1. The nature and the magnitude of the ferromagnetic exchange have been discussed on the basis of the structural features. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Resumo:
The synthesis and crystal structure of a novel one-dimensional Cu(II) compound [Cu(1,2-bis(tetrazol-1-yl)ethane)3](ClO4)2 are described. The single-crystal X-ray structure determination was carried out at 298 K. The molecular structure consists of a linear chain in which the Cu(II) ions are linked by three N4,N4' coordinating bis(tetrazole) ligands in syn conformation. The Cu(II) ions are in a Jahn-Teller distorted octahedral environment (Cu(1)-N(11)=2.034(2) Å, Cu(1)-N(21)=2.041(2) Å and Cu(1)-N(31)=2.391(2) Å). The Cu⋯Cu separations are 7.420(3) Å.
Resumo:
The structure-activity relationship optimization of the pyrazoline template 3a resulted in novel 3-oxo-1,2-diphenyl-2,3-dihydro-1H-pyrazol-4-yl)-indole carboxamides 4a-4e. These non-peptidal CCK ligands have been shown to act as potent CCK 1 ligands in a [125]I-CCK-8 receptor binding assay. The best amides (4c and 4d) of this series displayed an IC50 of 20/25 CCK 1 for the CCK 1 receptor. In a subsequent in-vivo evaluation using various behaviour pharmacological assays, an anxiolytic effect of these novel 3-oxo-1,2-diphenyl-2,3-dihydro-1H-pyrazol-4-yl)-indole carboxamides was found at high doses in the elevated plus-maze. In the despair swimming test, a model for testing antidepressants, an ED50 of 0.33/0.41 mg kg -1 was determined for amide 4c/4d and the antidepressant effect had a magnitude comparable to desimipramine. © 2006 The Authors.