3 resultados para 1123

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In most manufacturing systems the contribution of human labour remains a vital element that affects overall performance and output. Workers’ individual performance is known to be a product of personal attitudes towards work. However, in current system design processes, worker performance variability is assumed to be largely insignificant and the potential impact of worker attitudes is ignored. This paper describes a field study that investigated the extent to which workers’ production task cycle times vary and the degree to which such variations are associated with attitude differences. Results show that worker performance varies significantly, much more than is assumed by contemporary manufacturing system designers and that this appears to be due to production task characteristics. The findings of this research and their implications are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper offers a methodological approach towards the estimation and definition of enthalpies constituting an energy balance around a fast pyrolysis experiment conducted in a laboratory scale fluid bed with a capacity of 1 kg/ h. Pure N2 was used as fluidization medium at atmospheric pressure and the operating temperature (∼500°C) was adjusted with electrical resistors. The biomass feedstock type that was used was beech wood. An effort was made to achieve a satisfying 92.5% retrieval of products (dry basis mass balance) with the differences mainly attributed to loss of some bio-oil constituents into the quenching medium, ISOPAR™. The chemical enthalpy recovery for bio-oil, char and permanent gases is calculated 64.6%, 14.5% and 7.1%, respectively. All the energy losses from the experimental unit into the environment, namely the pyrolyser, cooling unit etc. are discussed and compared to the heat of fast pyrolysis that was calculated at 1123.5 kJ per kg of beech wood. This only represents 2.4% of the biomass total enthalpy or 6.5% its HHV basis. For the estimation of some important thermo-physical properties such as heat capacity and density, it was found that using data based on the identified compounds from the GC/MS analysis is very close to the reference values despite the small fraction of the bio-oil components detected. The methodology and results can help as a starting point for the proper design of fast pyrolysis experiments, pilot and/or industrial scale plants.