2 resultados para 1114
em Aston University Research Archive
Resumo:
The production of sufficient quantities of protein is an essential prelude to a structure determination, but for many viral and human proteins this cannot be achieved using prokaryotic expression systems. Groups in the Structural Proteomics In Europe (SPINE) consortium have developed and implemented high-throughput (HTP) methodologies for cloning, expression screening and protein production in eukaryotic systems. Studies focused on three systems: yeast (Pichia pastoris and Saccharomyces cerevisiae), baculovirus-infected insect cells and transient expression in mammalian cells. Suitable vectors for HTP cloning are described and results from their use in expression screening and protein-production pipelines are reported. Strategies for co-expression, selenomethionine labelling (in all three eukaryotic systems) and control of glycosylation (for secreted proteins in mammalian cells) are assessed. © International Union of Crystallography, 2006.
Resumo:
A new generalized sphere decoding algorithm is proposed for underdetermined MIMO systems with fewer receive antennas N than transmit antennas M. The proposed algorithm is significantly faster than the existing generalized sphere decoding algorithms. The basic idea is to partition the transmitted signal vector into two subvectors x and x with N - 1 and M - N + 1 elements respectively. After some simple transformations, an outer layer Sphere Decoder (SD) can be used to choose proper x and then use an inner layer SD to decide x, thus the whole transmitted signal vector is obtained. Simulation results show that Double Layer Sphere Decoding (DLSD) has far less complexity than the existing Generalized Sphere Decoding (GSDs).