6 resultados para 100509 Video Communications
em Aston University Research Archive
Resumo:
The advent of the Integrated Services Digital Network (ISDN) led to the standardisation of the first video codecs for interpersonal video communications, followed closely by the development of standards for the compression, storage and distribution of digital video in the PC environment, mainly targeted at CD-ROM storage. At the same time the second-generation digital wireless networks, and the third-generation networks being developed, have enough bandwidth to support digital video services. The radio propagation medium is a difficult environment in which to deploy low bit error rate, real time services such as video. The video coding standards designed for ISDN and storage applications, were targeted at low bit error rate levels, orders of magnitude lower than the typical bit error rates experienced on wireless networks. This thesis is concerned with the transmission of digital, compressed video over wireless networks. It investigates the behaviour of motion compensated, hybrid interframe DPCM/DCT video coding algorithms, which form the basis of current coding algorithms, in the presence of high bit error rates commonly found on digital wireless networks. A group of video codecs, based on the ITU-T H.261 standard, are developed which are robust to the burst errors experienced on radio channels. The radio link is simulated at low level, to generate typical error files that closely model real world situations, in a Rayleigh fading environment perturbed by co-channel interference, and on frequency selective channels which introduce inter symbol interference. Typical anti-multipath techniques, such as antenna diversity, are deployed to mitigate the effects of the channel. Link layer error control techniques are also investigated.
Resumo:
The concern over the quality of delivering video streaming services in mobile wireless networks is addressed in this work. A framework that enhances the Quality of Experience (QoE) of end users through a quality driven resource allocation scheme is proposed. To play a key role, an objective no-reference quality metric, Pause Intensity (PI), is adopted to derive a resource allocation algorithm for video streaming. The framework is examined in the context of 3GPP Long Term Evolution (LTE) systems. The requirements and structure of the proposed PI-based framework are discussed, and results are compared with existing scheduling methods on fairness, efficiency and correlation (between the required and allocated data rates). Furthermore, it is shown that the proposed framework can produce a trade-off between the three parameters through the QoE-aware resource allocation process.
Resumo:
A framework that aims to best utilize the mobile network resources for video applications is presented in this paper. The main contribution of the work proposed is the QoE-driven optimization method that can maintain a desired trade-off between fairness and efficiency in allocating resources in terms of data rates to video streaming users in LTE networks. This method is concerned with the control of the user satisfaction level from the service continuity's point of view and applies appropriate QoE metrics (Pause Intensity and variations) to determine the scheduling strategies in combination with the mechanisms used for adaptive video streaming such as 3GP/MPEG-DASH. The superiority of the proposed algorithms are demonstrated, showing how the resources of a mobile network can be optimally utilized by using quantifiable QoE measurements. This approach can also find the best match between demand and supply in the process of network resource distribution.
Resumo:
This work looks into video quality assessment applied to the field of telecare and proposes an alternative metric to the more traditionally used PSNR based on the requirements of such an application. We show that the Pause Intensity metric introduced in [1] is also relevant and applicable to heterogeneous networks with a wireless last hop connected to a wired TCP backbone. We demonstrate through our emulation testbed that the impairments experienced in such a network architecture are dominated by continuity based impairments rather than artifacts, such as motion drift or blockiness. We also look into the implication of using Pause Intensity as a metric in terms of the overall video latency, which is potentially problematic should the video be sent and acted upon in real-time. We conclude that Pause Intensity may be used alongside the video characteristics which have been suggested as a measure of the overall video quality. © 2012 IEEE.
Resumo:
Continuous progress in optical communication technology and corresponding increasing data rates in core fiber communication systems are stimulated by the evergrowing capacity demand due to constantly emerging new bandwidth-hungry services like cloud computing, ultra-high-definition video streams, etc. This demand is pushing the required capacity of optical communication lines close to the theoretical limit of a standard single-mode fiber, which is imposed by Kerr nonlinearity [1–4]. In recent years, there have been extensive efforts in mitigating the detrimental impact of fiber nonlinearity on signal transmission, through various compensation techniques. However, there are still many challenges in applying these methods, because a majority of technologies utilized in the inherently nonlinear fiber communication systems had been originally developed for linear communication channels. Thereby, the application of ”linear techniques” in a fiber communication systems is inevitably limited by the nonlinear properties of the fiber medium. The quest for the optimal design of a nonlinear transmission channels, development of nonlinear communication technqiues and the usage of nonlinearity in a“constructive” way have occupied researchers for quite a long time.
Resumo:
In this work, we investigate a new objective measurement for assessing the video playback quality for services delivered in networks that use TCP as a transport layer protocol. We define the new metric as pause intensity to characterize the quality of playback in terms of its continuity since, in the case of TCP, data packets are protected from losses but not from delays. Using packet traces generated from real TCP connections in a lossy environment, we are able to simulate the playback of a video and monitor buffer behaviors in order to calculate pause intensity values. We also run subjective tests to verify the effectiveness of the metric introduced and show that the results of pause intensity and the subjective scores made over the same real video clips are closely correlated.