7 resultados para 03061600 TM-1

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1) confers drug resistance and also mediates cellular efflux of many organic anions. MRP1 also transports glutathione (GSH); furthermore, this tripeptide stimulates transport of several substrates, including estrone 3-sulfate. We have previously shown that mutations of Lys(332) in transmembrane helix (TM) 6 and Trp(1246) in TM17 cause different substrate-selective losses in MRP1 transport activity. Here we have extended our characterization of mutants K332L and W1246C to further define the different roles these two residues play in determining the substrate and inhibitor specificity of MRP1. Thus, we have shown that TM17-Trp(1246) is crucial for conferring drug resistance and for binding and transport of methotrexate, estradiol glucuronide, and estrone 3-sulfate, as well as for binding of the tricyclic isoxazole inhibitor N-[3-(9-chloro-3-methyl-4-oxo-4H-isoxazolo-[4,3-c]quinolin-5-yl)-cyclohexylmethyl]-benzamide (LY465803). In contrast, TM6-Lys(332) is important for enabling GSH and GSH-containing compounds to serve as substrates (e.g., leukotriene C(4)) or modulators (e.g., S-decyl-GSH, GSH disulfide) of MRP1 and, further, for enabling GSH (or S-methyl-GSH) to enhance the transport of estrone 3-sulfate and increase the inhibitory potency of LY465803. On the other hand, both mutants are as sensitive as wild-type MRP1 to the non-GSH-containing inhibitors (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571), 1-[2-hydroxy-3-propyl-4-[4-(1H-tetrazol-5-yl)butoxy]phenyl]-ethanone (LY171883), and highly potent 6-[4'-carboxyphenylthio]-5[S]-hydroxy-7[E], 11[Z]14[Z]-eicosatetrenoic acid (BAY u9773). Finally, the differing abilities of the cysteinyl leukotriene derivatives leukotriene C(4), D(4), and F(4) to inhibit estradiol glucuronide transport by wild-type and K332L mutant MRP1 provide further evidence that TM6-Lys(332) is involved in the recognition of the gamma-Glu portion of substrates and modulators containing GSH or GSH-like moieties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tetraspanins are thought to exert their biological function(s) by co-ordinating the lateral movement and trafficking of associated molecules into tetraspanin-enriched microdomains. A second four-TM (transmembrane) domain protein family, the Claudin superfamily, is the major structural component of cellular TJs (tight junctions). Although the Claudin family displays low sequence homology and appears to be evolutionarily distinct from the tetraspanins, CD81 and Claudin-1 are critical molecules defining HCV (hepatitis C virus) entry; we recently demonstrated that CD81-Claudin-1 complexes have an essential role in this process. To understand the molecular basis of CD81-Claudin-1 complex formation, we produced and purified milligram quantities of full-length CD81 and Claudin-1, alone and in complex, in both detergent and lipid contexts. Structural characterization of these purified proteins will allow us to define the mechanism(s) underlying virus-cell interactions and aid the design of therapeutic agents targeting early steps in the viral life cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first and third extracellular loops (ECL) of G protein-coupled receptors (GPCRs) have been implicated in ligand binding and receptor function. This study describes the results of an alanine/leucine scan of ECLs 1 and 3 and loop-associated transmembrane (TM) domains of the secretin-like GPCR calcitonin receptor-like receptor which associates with receptor activity modifying protein 1 to form the CGRP receptor. Leu195Ala, Val198Ala and Ala199Leu at the top of TM2 all reduced aCGRP-mediated cAMP production and internalization; Leu195Ala and Ala199Leu also reduced aCGRP binding. These residues form a hydrophobic cluster within an area defined as the "minor groove" of rhodopsin-like GPCRs. Within ECL1, Ala203Leu and Ala206Leu influenced the ability of aCGRP to stimulate adenylate cyclase. In TM3, His219Ala, Leu220Ala and Leu222Ala have influences on aCGRP binding and cAMP production; they are likely to indirectly influence the binding site for aCGRP as well as having an involvement in signal transduction. On the exofacial surfaces of TMs 6 and 7, a number of residues were identified that reduced cell surface receptor expression, most noticeably Leu351Ala and Glu357Ala in TM6. The residues may contribute to the RAMP1 binding interface. Ile360Ala impaired aCGRP-mediated cAMP production. Ile360 is predicted to be located close to ECL2 and may facilitate receptor activation. Identification of several crucial functional loci gives further insight into the activation mechanism of this complex receptor system and may aid rational drug design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present extensive comparisons between numerical modelling and experimental measurements of the transmission performance of either CSRZ-ASK or CSRZ-DPSK modulation formats for 40-Gb/s WDM ULH systems on UltraWave (TM) fiber spans with all-Raman amplification. We numerically optimised the amplification and the signal format parameters for both CSRZ-DPSK and CSRZ-ASK formats. Numerical and experimental results show that, in a properly optimized transmission link, the DPSK format permits to double the transmission distance ( for a given BER level) with respect to the ASK format, while keeping a substantial OSNR margin ( on ASK modulation) after the propagation in the fiber line. Our comparison between numerical and experimental results permits to identify what is the most suitable BER estimator in assessing the transmission performance when using the DPSK format. (c) 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A self-starting all-fiber passively mode-locked Tm-doped fiber laser based on nonlinear loop mirror (NOLM) is demonstrated. Stable soliton pulses centered at 2017.33 nm with 1.56 nm FWHM were produced at a repetition rate of 1.514 MHz with pulse duration of 2.8 ps and pulse energy of 83.8 pJ. As increased pump power, the oscillator can also operate at noise-like (NL) regime. Stable NL pulses with coherence spike width of 341 fs and pulse energy of up to 249.32 nJ was achieved at a center wavelength of 2017.24 nm with 21.33 nm FWHM. To the best of our knowledge, this is the first 2 μm region NOLM-based mode-locked fiber laser operating at two regimes with the highest single pulse energy for NL pulses. © 2014 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thulium-doped all-fibre laser hybrid mode-locked by the co-action of nonlinear polarization evolution and single-walled carbon nanotubes generating 500-fs high-order solitons with the pulse energy 10.87 nJ at 1.9 μm wavelength band is demonstrated. © 2014 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the high-energy flat-top supercontinuum covering the mid-infrared wavelength range of 1.9-2.5 μm as well as electronically tunable femtosecond pulses between 1.98-2.22 μm directly from the thulium-doped fiber laser amplifier. Comparison of experimental results with numerical simulations confirms that both sources employ the same nonlinear optical mechanism - Raman soliton frequency shift occurring inside the Tm-fiber amplifier. To illustrate that, we investigate two versions of the compact diode-pumped SESAM mode-locked femtosecond thulium-doped all-silica-fiber-based laser system providing either broadband supercontinuum or tunable Raman soliton output, depending on the parameters of the system. The first system operates in the Raman soliton regime providing femtosecond pulses tunable between 1.98-2.22 μm. Wide and continuous spectral tunability over 240 nm was realized by changing only the amplifier pump diode current. The second system generates high-energy supercontinuum with the superior spectral flatness of better than 1 dB covering the wavelength range of 1.9-2.5 μm, with the total output energy as high as 0.284 μJ, the average power of 2.1 W at 7.5 MHz repetition rate. We simulate the amplifier operation in the Raman soliton self-frequency shift regime and discuss the role of induced Raman scattering in supercontinuum formation inside the fiber amplifier. We compare this system with a more traditional 1.85-2.53 μm supercontinuum source in the external highly-nonlinear commercial chalcogenide fiber using the Raman soliton MOPA as an excitation source. The reported systems1 can be readily applied to a number of industrial applications in the mid-IR, including sensing, stand-off detection, medical surgery and fine material processing.