27 resultados para 004 - Informatik (Data processing Computer science)
em Aston University Research Archive
Resumo:
This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.
Resumo:
Photonic technologies for data processing in the optical domain are expected to play a major role in future high-speed communications. Nonlinear effects in optical fibres have many attractive features and great, but not yet fully explored potential for optical signal processing. Here we provide an overview of our recent advances in developing novel techniques and approaches to all-optical processing based on fibre nonlinearities.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing. © 2005 IEEE.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
Retrospective clinical data presents many challenges for data mining and machine learning. The transcription of patient records from paper charts and subsequent manipulation of data often results in high volumes of noise as well as a loss of other important information. In addition, such datasets often fail to represent expert medical knowledge and reasoning in any explicit manner. In this research we describe applying data mining methods to retrospective clinical data to build a prediction model for asthma exacerbation severity for pediatric patients in the emergency department. Difficulties in building such a model forced us to investigate alternative strategies for analyzing and processing retrospective data. This paper describes this process together with an approach to mining retrospective clinical data by incorporating formalized external expert knowledge (secondary knowledge sources) into the classification task. This knowledge is used to partition the data into a number of coherent sets, where each set is explicitly described in terms of the secondary knowledge source. Instances from each set are then classified in a manner appropriate for the characteristics of the particular set. We present our methodology and outline a set of experiential results that demonstrate some advantages and some limitations of our approach. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
Complex Event processing (CEP) has emerged over the last ten years. CEP systems are outstanding in processing large amount of data and responding in a timely fashion. While CEP applications are fast growing, performance management in this area has not gain much attention. It is critical to meet the promised level of service for both system designers and users. In this paper, we present a benchmark for complex event processing systems: CEPBen. The CEPBen benchmark is designed to evaluate CEP functional behaviours, i.e., filtering, transformation and event pattern detection and provides a novel methodology of evaluating the performance of CEP systems. A performance study by running the CEPBen on Esper CEP engine is described and discussed. The results obtained from performance tests demonstrate the influences of CEP functional behaviours on the system performance. © 2014 Springer International Publishing Switzerland.
Resumo:
Recently, there has been a considerable research activity in extending topographic maps of vectorial data to more general data structures, such as sequences or trees. However, the representational capabilities and internal representations of the models are not well understood. We rigorously analyze a generalization of the Self-Organizing Map (SOM) for processing sequential data, Recursive SOM (RecSOM [1]), as a non-autonomous dynamical system consisting off a set of fixed input maps. We show that contractive fixed input maps are likely to produce Markovian organizations of receptive fields o the RecSOM map. We derive bounds on parameter $\beta$ (weighting the importance of importing past information when processing sequences) under which contractiveness of the fixed input maps is guaranteed.
Resumo:
This work attempts to create a systemic design framework for man-machine interfaces which is self consistent, compatible with other concepts, and applicable to real situations. This is tackled by examining the current architecture of computer applications packages. The treatment in the main is philosophical and theoretical and analyses the origins, assumptions and current practice of the design of applications packages. It proposes that the present form of packages is fundamentally contradictory to the notion of packaging itself. This is because as an indivisible ready-to-implement solution, current package architecture displays the following major disadvantages. First, it creates problems as a result of user-package interactions, in which the designer tries to mould all potential individual users, no matter how diverse they are, into one model. This is worsened by the minute provision, if any, of important properties such as flexibility, independence and impartiality. Second, it displays rigid structure that reduces the variety and/or multi-use of the component parts of such a package. Third, it dictates specific hardware and software configurations which probably results in reducing the number of degrees of freedom of its user. Fourth, it increases the dependence of its user upon its supplier through inadequate documentation and understanding of the package. Fifth, it tends to cause a degeneration of the expertise of design of the data processing practitioners. In view of this understanding an alternative methodological design framework which is both consistent with systems approach and the role of a package in its likely context is proposed. The proposition is based upon an extension of the identified concept of the hierarchy of holons* which facilitates the examination of the complex relationships of a package with its two principal environments. First, the user characteristics and his decision making practice and procedures; implying an examination of the user's M.I.S. network. Second, the software environment and its influence upon a package regarding support, control and operation of the package. The framework is built gradually as discussion advances around the central theme of a compatible M.I.S., software and model design. This leads to the formation of the alternative package architecture that is based upon the design of a number of independent, self-contained small parts. Such is believed to constitute the nucleus around which not only packages can be more effectively designed, but is also applicable to many man-machine systems design.
Resumo:
The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.
Resumo:
Optical data communication systems are prone to a variety of processes that modify the transmitted signal, and contribute errors in the determination of 1s from 0s. This is a difficult, and commercially important, problem to solve. Errors must be detected and corrected at high speed, and the classifier must be very accurate; ideally it should also be tunable to the characteristics of individual communication links. We show that simple single layer neural networks may be used to address these problems, and examine how different input representations affect the accuracy of bit error correction. Our results lead us to conclude that a system based on these principles can perform at least as well as an existing non-trainable error correction system, whilst being tunable to suit the individual characteristics of different communication links.