3 resultados para Índices de Divisia

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear models reach their limitations in applications with nonlinearities in the data. In this paper new empirical evidence is provided on the relative Euro inflation forecasting performance of linear and non-linear models. The well established and widely used univariate ARIMA and multivariate VAR models are used as linear forecasting models whereas neural networks (NN) are used as non-linear forecasting models. It is endeavoured to keep the level of subjectivity in the NN building process to a minimum in an attempt to exploit the full potentials of the NN. It is also investigated whether the historically poor performance of the theoretically superior measure of the monetary services flow, Divisia, relative to the traditional Simple Sum measure could be attributed to a certain extent to the evaluation of these indices within a linear framework. Results obtained suggest that non-linear models provide better within-sample and out-of-sample forecasts and linear models are simply a subset of them. The Divisia index also outperforms the Simple Sum index when evaluated in a non-linear framework. © 2005 Taylor & Francis Group Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Divisia money is a monetary aggregate that gives each component asset an assigned weight. We use an evolutionary neural network to calculate new Divisia weights for each component utilising the Bank of England monetary data for the U.K. We propose a new monetary aggregate using our newly derived weights to carry out quantitative inflation prediction. The results show that this new monetary aggregate has better inflation forecasting performance than the traditionally constructed Bank of England Divisa money. This result is important for monetary policymakers, as improved construction of monetary aggregates will yield tighter relationships between key macroeconomic variables and ultimately, greater macroeconomic control. Research is ongoing to establish the extent of the increased information content and parameter stability of this new monetary aggregate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares the UK/US exchange rate forecasting performance of linear and nonlinear models based on monetary fundamentals, to a random walk (RW) model. Structural breaks are identified and taken into account. The exchange rate forecasting framework is also used for assessing the relative merits of the official Simple Sum and the weighted Divisia measures of money. Overall, there are four main findings. First, the majority of the models with fundamentals are able to beat the RW model in forecasting the UK/US exchange rate. Second, the most accurate forecasts of the UK/US exchange rate are obtained with a nonlinear model. Third, taking into account structural breaks reveals that the Divisia aggregate performs better than its Simple Sum counterpart. Finally, Divisia-based models provide more accurate forecasts than Simple Sum-based models provided they are constructed within a nonlinear framework.