3 resultados para Émile Zola
em Aston University Research Archive
Resumo:
Purpose – The purpose of this paper is to investigate the “last mile” delivery link between a hub and spoke distribution system and its customers. The proportion of retail, as opposed to non-retail (trade) customers using this type of distribution system has been growing in the UK. The paper shows the applicability of simulation to demonstrate changes in overall delivery policy to these customers. Design/methodology/approach – A case-based research method was chosen with the aim to provide an exemplar of practice and test the proposition that simulation can be used as a tool to investigate changes in delivery policy. Findings – The results indicate the potential improvement in delivery performance, specifically in meeting timed delivery performance, that could be made by having separate retail and non-retail delivery runs from the spoke terminal to the customer. Research limitations/implications – The simulation study does not attempt to generate a vehicle routing schedule but demonstrates the effects of a change on delivery performance when comparing delivery policies. Practical implications – Scheduling and spreadsheet software are widely used and provide useful assistance in the design of delivery runs and the allocation of staff to those delivery runs. This paper demonstrates to managers the usefulness of investigating the efficacy of current design rules and presents simulation as a suitable tool for this analysis. Originality/value – A simulation model is used in a novel application to test a change in delivery policy in response to a changing delivery profile of increased retail deliveries.
Resumo:
Recent years large scale natural disasters: (e.g. 2004 Tsunami, 2005 Earthquake in South Asia, 2010 Earthquake in Haiti, 2010 flood in Pakistan, 2011 Earthquake in Japan etc.) have captured international attention and led to the advance of research of disaster management. To cope with these huge impact disasters, the involved stakeholders have to learn how quickly and efficiently the relief organisations are able to respond. After a disaster strikes, it is necessary to get the relief aid to the affected people by the prompt action of relief organisations. This supply chain process has to be very fast and efficient. The purpose of this paper is to define the last mile relief distribution in humanitarian supply chain and develop a logistical framework by identifying the factors that affect this process. Seventeen interviews were conducted with field officers and the data analysed to identify which are the critical factors for last mile relief distribution of disaster relief operation. A framework is presented classifying these factors according to the ability to implement them in an optimisation model of humanitarian logistics.
Resumo:
Last mile relief distribution is the final stage of humanitarian logistics. It refers to the supply of relief items from local distribution centers to the disaster affected people (Balcik et al., 2008). In the last mile relief distribution literature, researchers have focused on the use of optimisation techniques for determining the exact optimal solution (Liberatore et al., 2014), but there is a need to include behavioural factors with those optimisation techniques in order to obtain better predictive results. This paper will explain how improving the coordination factor increases the effectiveness of the last mile relief distribution process. There are two stages of methodology used to achieve the goal: Interviews: The authors conducted interviews with the Indian Government and with South Asian NGOs to identify the critical factors for final relief distribution. After thematic and content analysis of the interviews and the reports, the authors found some behavioural factors which affect the final relief distribution. Model building: Last mile relief distribution in India follows a specific framework described in the Indian Government disaster management handbook. We modelled this framework using agent based simulation and investigated the impact of coordination on effectiveness. We define effectiveness as the speed and accuracy with which aid is delivered to affected people. We tested through simulation modelling whether coordination improves effectiveness.