262 resultados para fiber interferometer
Resumo:
We propose a novel mode-locked fiber laser design that relies on attracting similariton solutions in fiber amplifiers with normal group-velocity dispersion and strong spectral filtering to compensate increased pulse duration and bandwidth. Stable high-energy, large-bandwidth pulses are obtained that can be linearly compressed, resulting in ultrashort pulses.
Resumo:
A novel all-fiber bipolar delay line filter is realized in a single-line cascaded high birefringence fiber structure. Optically coherent operation is achieved with suppression of interference noise. Complementary filter outputs give simultaneous lowpass and highpass responses.
Resumo:
linearity management is explored as a complete tool to obtain maximum transmission reach in a WDM fiber transmission system, making it possible to optimize multiple system parameters, including optimal dispersion pre-compensation, with fast simulations based on the continuous-wave approximation.
Resumo:
We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment.
Resumo:
The interactions of the core-propagating light with an intersecting microslit within a conventional single-mode fiber are investigated. Orientation-dependent out-coupling of core light was utilized to create side-detection, miniature fiber rotation sensors.
Resumo:
The interactions of the core-propagating light with an intersecting microslit within a conventional single-mode fiber are investigated. Orientation-dependent out-coupling of core light was utilized to create side-detection, miniature fiber rotation sensors.
Resumo:
Point-by-point inscription of sub-µm period fiber Bragg gratings with good spectral quality, first order Bragg resonances within the C-band is achieved. Distinct polarization characteristics are further observed in these fiber gratings.
Resumo:
We provide an overview of our recent work on the shaping and stability of optical continua in the long pulse regime. Fibers with normal group-velocity dispersion at all-wavelengths are shown to allow for highly coherent continua that can be nonlinearly shaped using appropriate initial conditions. In contrast, supercontinua generated in the anomalous dispersion regime are shown to exhibit large fluctuations in the temporal and spectral domains that can be controlled using a carefully chosen seed. A particular example of this is the first experimental observation of the Peregrine soliton which constitutes a prototype of optical rogue-waves.
Resumo:
We propose a new method for the generation of both triangular-shaped optical pulses and flat-top, coherent supercontinuum spectra using the effect of fourth-order dispersion on parabolic pulses in a passive, normally dispersive highly nonlinear fiber. The pulse reshaping process is described qualitatively and is compared to numerical simulations.
Resumo:
We numerically demonstrate a new fiber laser architecture supporting spectral compression of negatively chirped pulses in passive normally dispersive fiber. Such a process is beneficial for improving the energy efficiency of the cavity as it prevents narrow spectral filtering from being highly dissipative. The proposed laser design provides an elegant way of generating transform-limited picosecond pulses. © 2012 IEEE.
Resumo:
A theoretical model allows for the characterization and optimization of the intra-cavity pulse evolutions in high-power fiber lasers. Multi-parameter analysis of laser performance can be made at a fraction of the computational cost.
Resumo:
In this first talk on dissipative structures in fiber applications, we extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths leading to the generation of stable, short pulses with high energy. Two types of intra-map pulse evolutions are observed depending on the net cavity dispersion. These are characterized by a reduced model and semi-analytical solutions are obtained.
Resumo:
In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.
Resumo:
In the third and final talk on dissipative structures in fiber applications, we discuss mathematical techniques that can be used to characterize modern laser systems that consist of several discrete elements. In particular, we use a nonlinear mapping technique to evaluate high power laser systems where significant changes in the pulse evolution per cavity round trip is observed. We demonstrate that dissipative soliton solutions might be effectively described using this Poincaré mapping approach.