224 resultados para Nonlinear optical absorption
Resumo:
We propose a novel all-optical signal processor for use at a return-to-zero receiver utilising loop mirror intensity filtering and nonlinear pulse broadening in normal dispersion fibre. The device offers reamplification and cleaning up of the optical signals, and phase margin improvement. The efficiency of the technique is demonstrated by application to 40 Gbit/s data transmission.
Resumo:
We consider non-degenerate two-wave mixing in photorefractive Bi12SiO20. It is shown theoretically that the presence of absorption and optical activity in the photorefractive media may result in a number of maxima for the gain as the frequency detuning between the two beams is varied. Further, when the beam interaction is used for optical amplification, there may also exist an optimum crystal length beyond which there is a reduction in the useful gain obtainable. Experimental results are presented in confirmation of the theory.
Resumo:
Optical coherence tomography (OCT) systems are becoming more commonly used in biomedical imaging and, to enable continued uptake, a reliable method of characterizing their performance and validating their operation is required. This paper outlines the use of femtosecond laser subsurface micro-inscription techniques to fabricate an OCT test artifact for validating the resolution performance of a commercial OCT system. The key advantage of this approach is that by utilizing the nonlinear absorption a three dimensional grid of highly localized point and line defects can be written in clear fused silica substrates.
Resumo:
We provide an overview of our recent work on the shaping and stability of optical continua in the long pulse regime. Fibers with normal group-velocity dispersion at all-wavelengths are shown to allow for highly coherent continua that can be nonlinearly shaped using appropriate initial conditions. In contrast, supercontinua generated in the anomalous dispersion regime are shown to exhibit large fluctuations in the temporal and spectral domains that can be controlled using a carefully chosen seed. A particular example of this is the first experimental observation of the Peregrine soliton which constitutes a prototype of optical rogue-waves.
Resumo:
The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.
Resumo:
In this first talk on dissipative structures in fiber applications, we extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths leading to the generation of stable, short pulses with high energy. Two types of intra-map pulse evolutions are observed depending on the net cavity dispersion. These are characterized by a reduced model and semi-analytical solutions are obtained.
Resumo:
In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.
Resumo:
In the third and final talk on dissipative structures in fiber applications, we discuss mathematical techniques that can be used to characterize modern laser systems that consist of several discrete elements. In particular, we use a nonlinear mapping technique to evaluate high power laser systems where significant changes in the pulse evolution per cavity round trip is observed. We demonstrate that dissipative soliton solutions might be effectively described using this Poincaré mapping approach.
Resumo:
We report the impact of cascaded reconfigurable optical add-drop multiplexer induced penalties on coherently-detected 28 Gbaud polarization multiplexed m-ary quadrature amplitude modulation (PM m-ary QAM) WDM channels. We investigate the interplay between different higher-order modulation channels and the effect of filter shapes and bandwidth of (de)multiplexers on the transmission performance, in a segment of pan-European optical network with a maximum optical path of 4,560 km (80km x 57 spans). We verify that if the link capacities are assigned assuming that digital back propagation is available, 25% of the network connections fail using electronic dispersion compensation alone. However, majority of such links can indeed be restored by employing single-channel digital back-propagation employing less than 15 steps for the whole link, facilitating practical application of DBP. We report that higher-order channels are most sensitive to nonlinear fiber impairments and filtering effects, however these formats are less prone to ROADM induced penalties due to the reduced maximum number of hops. Furthermore, it has been demonstrated that a minimum filter Gaussian order of 3 and bandwidth of 35 GHz enable negligible excess penalty for any modulation order.
Resumo:
We report for the first time, the impact of cross phase modulation in WDM optical transport networks employing dynamic 28 Gbaud PM-mQAM transponders (m = 4, 16, 64, 256). We demonstrate that if the order of QAM is adjusted to maximize the capacity of a given route, there may be a significant degradation in the transmission performance of existing traffic for a given dynamic network architecture. We further report that such degradations are correlated to the accumulated peak-to-average power ratio of the added traffic along a given path, and that managing this ratio through pre-distortion reduces the impact of adjusting the constellation size of neighboring channels. (C) 2011 Optical Society of America
Resumo:
We report for the first time on the limitations in the operational power range of network traffic in the presence of heterogeneous 28-Gbaud polarization-multiplexed quadrature amplitude modulation (PM-mQAM) channels in a nine-channel dynamic optical mesh network. In particular, we demonstrate that transponders which autonomously select a modulation order and launch power to optimize their own performance will have a severe impact on copropagating network traffic. Our results also suggest that altruistic transponder operation may offer even lower penalties than fixed launch power operation.
Resumo:
We experimentally demonstrate adiabatic soliton propagation in the fundamental mode of a few mode optical fibre and more complex behaviour in a higher order mode, indicating that the impact of nonlinearities differs for each mode.
Resumo:
All-optical data processing is expected to play a major role in future optical communications. Nonlinear effects in optical fibers have attractive applications in optical signal processing. In this paper, we review our recent advances in developing all-optical processing techniques at high speed based on optical fiber nonlinearities.