133 resultados para polymer optical flber (POF)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high performance liquid-level sensor based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported in detail. The sensor sensitivity is found to be 98pm/cm of liquid, enhanced by more than a factor of 9 compared to a reported silica fiber-based sensor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This chapter deals with gratings recorded in polymeric optical fibers (POFs); predominantly those based on poly (methyl methacrylate) (PMMA). We summarise the different mechanical and optical properties of POFs which are relevant to the application of POF Bragg gratings and discuss the existing literature on the subject of the UV photosensitivity of PMMA. The current state of the art in POF grating inscription is presented and we survey some of the emerging applications for these devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With regard to polymer fibre Bragg gratings, we investigate one of the consequences of the visco-elastic nature of the constituent polymer: hysteresis in the response of wavelength shift vs sensor elongation. We show that when a grating sensor is directly bonded to a substrate, the hysteresis is reduced by a factor of 10 from the case where the sensor is freely suspended between two supports.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This chapter deals with gratings recorded in polymeric optical fibers (POFs); predominantly those based on poly (methyl methacrylate) (PMMA). We summarize the different mechanical and optical properties of POFs which are relevant to the application of POF Bragg gratings and discuss the existing literature on the subject of the UV photosensitivity of PMMA. The current state of the art in POF grating inscription is presented and we survey some of the emerging applications for these devices. © 2011 Bentham Science Publishers Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A polymer-core/silica-cladding hybrid optical fiber is implemented by filling a capillary with UV-curable epoxy and a following UV-laser scanning exposure. A fiber Bragg grating is successfully inscribed in parallel using a phase mask. The experimental results show a reduced thermal response for the FBG and a theoretical analysis for such a hybrid optical fiber is performed which corroborates existing of a turning temperature for minimized thermal response. © 2014 SPIE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optical fibre sensor system for humidity and temperature, comprising two Bragg gratings recorded in silica and polymer fibre, has been characterised. The response of this system is very well conditioned (2-norm condition number = 8.8) and consequently uncertainties in wavelength measurement do not lead to large errors in the recovered humidity and temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of microstructures including microchannels and microslots were made in optical fibers using femtosecond laser inscription and chemical etching. Integrated with UV-inscribed fiber Bragg gratings, these microstructures have miniature, robustness and high sensitivity features and have been used to implement novel devices for various sensing applications. The fiber microchannels were used to detect the refractive index change of liquid presenting sensitivities up to 7.4 nm/refractive index unit (RIU) and 166.7 dB/RIU based on wavelength and power detection, respectively. A microslot-in-fiber based liquid core waveguide as a refractometer has been proposed and the device was used to measure refractive index, and a sensitivity up to 945 nm/RIU (10-6/pm) was obtained. By filling epoxy in the microslot and subsequent UV light curing, a hybrid waveguide grating structure with polymer core and glass cladding was fabricated. The obtained device was highly thermal responsive, demonstrating a linear coefficient of 211 pm/°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer composites are one of the most attractive near-term means to exploit the unique properties of carbon nanotubes and graphene. This is particularly true for composites aimed at electronics and photonics, where a number of promising applications have already been demonstrated. One such example is nanotube-based saturable absorbers. These can be used as all-optical switches, optical amplifier noise suppressors, or mode-lockers to generate ultrashort laser pulses. Here, we review various aspects of fabrication, characterization, device implementation and operation of nanotube-polymer composites to be used in photonic applications. We also summarize recent results on graphene-based saturable absorbers for ultrafast lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of a rapid screening method for the construction of ternary phase diagrams is described for the first time, providing detailed visualization of phase boundaries in solvent-mediated blends. Our new approach rapidly identifies ternary blend compositions that afford optically clear materials, useful for applications where transparent films are necessary. The use of 96-well plates and a scanning plate reader has enabled rapid optical characterization to be carried out by transmission spectrophotometry (450 nm), whilst the nature and extent of crystallinity was examined subsequently by wide angle X-ray scattering (WAXS). The moderating effect of cellulose acetate butyrate can be visualized as driving the position of the phase boundaries in poly(l-lactic acid)/polycaprolactone (PLLA/PCL) blends. More surprisingly, the boundaries are critically dependent on the molecular weight of the crystallizable PLLA and PCL, with higher molecular weight polymers leading to blends with reduced phase separation. On the other hand, the propensity to crystallize was more evident in shorter chains. WAXS provides a convenient way of characterizing the contribution of the individual blend components to the crystalline regions across the range of blend compositions. © 2013 Society of Chemical Industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber Bragg grating sensors recorded in poly(methyl methacrylate) fiber often exhibit hysteresis in the response of Bragg wavelength to strain, particularly when exposed to high levels of strain. We show that, when such a fiber grating sensor is bonded directly to a substrate, the hysteresis is reduced by more than 12 times, compared to the case where the sensor is suspended freely between two supports. © 2013 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fine control of the microstructured polymer fiber Bragg grating spectrum properties, such as maximum reflected power and 3-dB bandwidth, through acousto-optic modulation is presented. For simulation purposes, the device is modelled as a single structure, comprising a silica horn and a fiber Bragg grating. For similar sized structures a good correlation between the numerical results and the experimental data is obtained, allowing the strain field to be completely characterized along the whole structure. It is also shown that the microstructured polymer fiber Bragg grating requires less effort from the piezoelectric actuator to produce modification in the grating spectrum when compared with a silica fiber Bragg grating. This technique has potential to be applied on tunable optical filters and tunable cavities for photonic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of microstructures including microchannels and microslots were made in optical fibers using femtosecond laser inscription and chemical etching. Integrated with UV-inscribed fiber Bragg gratings, these microstructures have miniature, robustness and high sensitivity features and have been used to implement novel devices for various sensing applications. The fiber microchannels were used to detect the refractive index change of liquid presenting sensitivities up to 7.4 nm/refractive index unit (RIU) and 166.7 dB/RIU based on wavelength and power detection, respectively. A microslot-in-fiber based liquid core waveguide as a refractometer has been proposed and the device was used to measure refractive index, and a sensitivity up to 945 nm/RIU (10-6/pm) was obtained. By filling epoxy in the microslot and subsequent UV light curing, a hybrid waveguide grating structure with polymer core and glass cladding was fabricated. The obtained device was highly thermal responsive, demonstrating a linear coefficient of 211 pm/°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have presented and demonstrated efficient mode locking of erbium doped fiber laser using graphene carboxymethylcellulose (CMC) polymer composites. The laser gives out soliton pulse with duration of ∼837 fs, and 0.19 nJ pulse energy. © 2014 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a newly designed polymer light-emitting diode with a bandwidth of ∼350 kHz for high-speed visible light communications. Using this new polymer light-emitting diode as a transmitter, we have achieved a record transmission speed of 10 Mb/s for a polymer light-emitting diode-based optical communication system with an orthogonal frequency division multiplexing technique, matching the performance of single carrier formats using multitap equalization. For achieving such a high data-rate, a power pre-emphasis technique was adopted. © 2014 Optical Society of America.