484 resultados para optical fiber sensors
Resumo:
The modulation instability (MI) in optical fiber amplifiers and lasers with anomalous dispersion leads to cw radiation breakup. This can be both a detrimental effect limiting the performance of amplifiers and an underlying physical mechanism in the operation of MI-based devices. Here we revisit the analytical theory of MI in fiber optical amplifiers. The results of the exact theory are compared with the previously used adiabatic approximation model, and the range of applicability of the latter is determined. © 2010 Optical Society of America.
Resumo:
Opto-acoustic imaging is a growing field of research in recent years, providing functional imaging of physiological biomarkers, such as the oxygenation of haemoglobin. Piezo electric transducers are the industry standard detector for ultrasonics, but their limited bandwidth, susceptibility to electromagnetic interference and their inversely proportional sensitivity to size all affect the detector performance. Sensors based on polymer optical fibres (POF) are immune to electromagnetic interference, have lower acoustic impedance and a reduced Young's Modulus compared to silica fibres. Furthermore, POF enables the possibility of a wideband sensor and a size appropriate to endoscopy. Micro-structured POF (mPOF) used in an interferometric detector has been shown to be an order of magnitude more sensitive than silica fibre at 1 MHz and 3 times more sensitive at 10 MHz. We present the first opto-acoustic measurements obtained using a 4.7mm PMMA mPOF Bragg grating with a fibre diameter of 130 μm and present the lateral directivity pattern of a PMMA mPOF FBG ultrasound sensor over a frequency range of 1-50 MHz. We discuss the impact of the pattern with respect to the targeted application and draw conclusions on how to mitigate the problems encountered.
Resumo:
Water contamination can cause serious problems that compromise in transformer's safe operation and reduce its lifetime. Online monitoring of moisture concentration in transformer oil would permit the control of moisture buildup. This letter presents a direct optical measurement of moisture concentration in transformer oil using a poly(methyl methacrylate) (PMMA)-based optical fiber Bragg grating (POFBG). The refractive index and volume of PMMA-based optical fiber vary with the moisture in the surrounding transformer oil, changing the reflecting wavelength of the grating. A sensitivity of POFBG wavelength change to moisture content of 29 pm/ppm is demonstrated in this letter, indicating detectable water content better than 0.05 ppm.
Resumo:
The distinct behaviour of femtosecond laser inscribed long period gratings, with a non-uniform index perturbation within the optical fibre core, has been studied experimentally. The non-uniform laser-induced perturbation results in light coupling from the core mode to a greater number of cladding modes than is the case with their UV laser inscribed counterparts, and this is made evident from the surrounding refractive index (SRI) grating response. Femtosecond inscribed long period gratings are shown to simultaneously couple to multiple sets of cladding modes. A 400μm LPG is shown to result in attenuation peaks that have both blue and red wavelength shifts over a 1250nm to 1700nm wavelength range. This gives rise to SRI sensitivities far greater than anything achievable by monitoring a single attenuation peak. The maximum sensitivity produced by monitoring a single attenuation peak was 1106nm/RIU, whereas monitoring opposing wavelength shifts resulted in a significantly improved sensitivity of 1680nm/RIU. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
We report a novel in-fibre twist sensor utilising strong polarisation dependent coupling behaviour of fiber Bragg grating with 81° tilted structure. The demonstrated twist sensor has shown high torsion sensitivity and capability of direction recognition.
Resumo:
We report a novel in-fibre twist sensor utilising strong polarisation dependent coupling behaviour of fiber Bragg grating with 81° tilted structure. The demonstrated twist sensor has shown high torsion sensitivity and capability of direction recognition.
Resumo:
A novel all-fibre cavity ring down spectroscopy technique is demonstrated where a tilted fibre Bragg grating in the cavity provides sensitivity to surrounding refractive index. A decay time of 450ns was attained when sensing water.
Resumo:
We describe a low cost approach to interrogating a distributive tactile surface instrumented with fibre Bragg grating sensors. The system can determine the position, shape, and orientation of an object on the surface.
Resumo:
Preliminary results are given for a long period grating sensing array scheme based upon a derivative spectroscopy interrogation technique for Human Respiratory Plethysmography with simultaneous measurements of a spirometer, reasonable agreement with recorded volumetric changes was found.
Resumo:
We demonstrate the use of gratings to assist in the generation of surface plasmon resonances resulting in a device having a high index resolution of 3×10-5 in the aqueous index regime.
Resumo:
We report experimental measurements of the reflection spectra of Bragg gratings inscribed in 4-core fibres under transverse loading. Broadening and splitting of the Bragg peaks from each core are observed as a function of load and fibre orientation.
Resumo:
A refractive index sensing system has been demonstrated, which is based upon an in-line fibre long period grating Mach-Zehnder interferometer with a heterodyne interrogation technique. This sensing system has comparable accuracy to laboratory-based techniques used in industry such as high performance liquid chromatography and UV spectroscopy. The advantage of this system is that measurements can be made in-situ for applications in continuous process control. Compared to other refractive index sensing schemes using LPGs, this approach has two main advantages. Firstly, the system relies on a simple optical interrogation system and therefore has the real potential for being low cost, and secondly, so far as we are aware it provides the highest refractive index resolution reported for any fibre LPG device.
Resumo:
Progress in optical fibre sensor research has often been achieved by taking advantage of components developed for use in telecommunications, where the greater existing market is able to support the rapid commercialisation of novel devices. In the last few years there has been considerable interest in the telecommunications community in deploying arrayed waveguide gratings (AWGs) produced in a range of technologies in a variety of roles. We feel it is therefore surprising that there have been very few reports of research into using AWGs for sensing. In this paper we consider some possible roles for these devices in interrogation systems for interferometric and fibre Bragg grating (FBG) sensors.
Resumo:
We demonstrate the development of femtosecond laser inscribed superstructure fiber gratings (fsSFG) in silica optical fibre. We utilise a single step process, to inscribe low loss and polarisation independent, sampled gratings in optical fibres using the point by point femtosecond laser inscription method. Our approach results in a controlled modulated index change with complete suppression of any overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. We also solve Maxwell's equations and calculate the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis and the estimation of inscription parameters such as ac index modulation, wavelength and the relative peak strength. We also explore how changes in the grating's period influence the reflection spectrum.
Resumo:
We experimentally demonstrated a highly sensitive twist sensor system based on a 45° and an 81° tilted fibre grating (TFG). The 81°-TFG has a set of dual-peaks that are due to the birefringence induced by its extremely tilted structure. When the 81°-TFG subjected to twist, the coupling to the two peaks would interchange from each other, providing a mechanism to measure and monitor the twist. We have investigated the performance of the sensor system by three interrogation methods (spectral, power-measurement and voltage-measurement). The experimental results clearly show that the 81°-TFG and the 45°-TFG could be combined forming a full fibre twist sensor system capable of not just measuring the magnitude but also recognising the direction of the applied twist.