107 resultados para manufacturing system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the world's synchrotrons and X-FELs endeavour to meet the need to analyse ever-smaller protein crystals, there grows a requirement for a new technique to present nano-dimensional samples to the beam for X-ray diffraction experiments.The work presented here details developmental work to reconfigure the nano tweezer technology developed by Optofluidics (PA, USA) for the trapping of nano dimensional protein crystals for X-ray crystallography experiments. The system in its standard configuration is used to trap nano particles for optical microscopy. It uses silicon nitride laser waveguides that bridge a micro fluidic channel. These waveguides contain 180 nm apertures of enabling the system to use biologically compatible 1.6 micron wavelength laser light to trap nano dimensional biological samples. Using conventional laser tweezers, the wavelength required to trap such nano dimensional samples would destroy them. The system in its optical configuration has trapped protein molecules as small as 10 nanometres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dimensional and form inspections are key to the manufacturing and assembly of products. Product verification can involve a number of different measuring instruments operated using their dedicated software. Typically, each of these instruments with their associated software is more suitable for the verification of a pre-specified quality characteristic of the product than others. The number of different systems and software applications to perform a complete measurement of products and assemblies within a manufacturing organisation is therefore expected to be large. This number becomes even larger as advances in measurement technologies are made. The idea of a universal software application for any instrument still appears to be only a theoretical possibility. A need for information integration is apparent. In this paper, a design of an information system to consistently manage (store, search, retrieve, search, secure) measurement results from various instruments and software applications is introduced. Two of the main ideas underlying the proposed system include abstracting structures and formats of measurement files from the data so that complexity and compatibility between different approaches to measurement data modelling is avoided. Secondly, the information within a file is enriched with meta-information to facilitate its consistent storage and retrieval. To demonstrate the designed information system, a web application is implemented. © Springer-Verlag Berlin Heidelberg 2010.